Answer
Verified
475.8k+ views
Hint: The energy of a neutron is given, and we can calculate the linear momentum associated with the neutron from the energy given and the mass given in the problem. If d is the distance of closest approach, then the linear momentum times the distance of closest approach gives the relative angular momentum of the neutron with respect to the proton.
Formula Used:
The linear momentum associated with a body which has a kinetic energy E and mass m is given by the formula,
$p=\sqrt{2mE}$
Angular momentum of a body of mass m, moving with a linear velocity v at a perpendicular distance r from the origin is given by,
L=mvr
Complete step by step answer:
In the question, it is given that the energy or the kinetic energy of a neutron is $1MeV$ and also the mass of the neutron is given $1.6\times {{10}^{-27}}kg$. So, from these factors, we can calculate the linear momentum associated with the neutron using the formula,
$p=\sqrt{2{{m}_{p}}E}$
Where ${{m}_{p}}$ is the mass of the proton. We can substitute the values in the above equation to get,
$p=\sqrt{2\times 1.6\times {{10}^{-27}}kg\times 1\times {{10}^{6}}eV}$
$p=\sqrt{2\times 1.6\times {{10}^{-27}}kg\times \left( 1\times {{10}^{6}}\times 1.6\times {{10}^{-19}} \right)J}$
$\therefore p=2.26\times {{10}^{-20}}kgm{{s}^{-1}}$
So, we now have the linear momentum associated with the neutron. The relative angular momentum of the neutron with respect to the proton can be represented as, (we can take the position of the proton as the origin)
Relative angular momentum=mvd=pd
Where d is the distance of the closest approach, p is the linear momentum of the neutron. We are given that the relative angular momentum of the neutron with the proton is ${{10}^{-35}}Js$, So we can write,
${{10}^{-35}}Js=pd$
$\Rightarrow {{10}^{-35}}Js=\left( 2.26\times {{10}^{-20}}kgm{{s}^{-1}} \right)d$
$\Rightarrow d=\dfrac{{{10}^{-35}}Js}{2.26\times {{10}^{-20}}kgm{{s}^{-1}}}$
$\therefore d=0.44fm$
So, the distance of the closest approach is 0.44 fm.
So, the answer to the question is option (D).
Note: In physics, angular momentum is the analogue of linear momentum for a rotating body. It is a pseudovector which means it transforms like a vector but is not really a vector. In three dimension it can be represented by the formula, \[\overrightarrow{L}=\overrightarrow{r}\times \overrightarrow{p}\], where L is the angular momentum of the body, r is the position vector from the origin and p is the linear momentum of the body.
Conservation of Angular Momentum: When no external torque acts on a rotating body or system executing a uniform rotational motion, then the angular momentum of the body is said to be conserved. Which means that the angular momentum does not change with time. The theorem is analogous to Newton’s third law.
The angular momentum of an extended body can be expressed as the product of the moment of inertia of the body and its angular velocity.
Formula Used:
The linear momentum associated with a body which has a kinetic energy E and mass m is given by the formula,
$p=\sqrt{2mE}$
Angular momentum of a body of mass m, moving with a linear velocity v at a perpendicular distance r from the origin is given by,
L=mvr
Complete step by step answer:
In the question, it is given that the energy or the kinetic energy of a neutron is $1MeV$ and also the mass of the neutron is given $1.6\times {{10}^{-27}}kg$. So, from these factors, we can calculate the linear momentum associated with the neutron using the formula,
$p=\sqrt{2{{m}_{p}}E}$
Where ${{m}_{p}}$ is the mass of the proton. We can substitute the values in the above equation to get,
$p=\sqrt{2\times 1.6\times {{10}^{-27}}kg\times 1\times {{10}^{6}}eV}$
$p=\sqrt{2\times 1.6\times {{10}^{-27}}kg\times \left( 1\times {{10}^{6}}\times 1.6\times {{10}^{-19}} \right)J}$
$\therefore p=2.26\times {{10}^{-20}}kgm{{s}^{-1}}$
So, we now have the linear momentum associated with the neutron. The relative angular momentum of the neutron with respect to the proton can be represented as, (we can take the position of the proton as the origin)
Relative angular momentum=mvd=pd
Where d is the distance of the closest approach, p is the linear momentum of the neutron. We are given that the relative angular momentum of the neutron with the proton is ${{10}^{-35}}Js$, So we can write,
${{10}^{-35}}Js=pd$
$\Rightarrow {{10}^{-35}}Js=\left( 2.26\times {{10}^{-20}}kgm{{s}^{-1}} \right)d$
$\Rightarrow d=\dfrac{{{10}^{-35}}Js}{2.26\times {{10}^{-20}}kgm{{s}^{-1}}}$
$\therefore d=0.44fm$
So, the distance of the closest approach is 0.44 fm.
So, the answer to the question is option (D).
Note: In physics, angular momentum is the analogue of linear momentum for a rotating body. It is a pseudovector which means it transforms like a vector but is not really a vector. In three dimension it can be represented by the formula, \[\overrightarrow{L}=\overrightarrow{r}\times \overrightarrow{p}\], where L is the angular momentum of the body, r is the position vector from the origin and p is the linear momentum of the body.
Conservation of Angular Momentum: When no external torque acts on a rotating body or system executing a uniform rotational motion, then the angular momentum of the body is said to be conserved. Which means that the angular momentum does not change with time. The theorem is analogous to Newton’s third law.
The angular momentum of an extended body can be expressed as the product of the moment of inertia of the body and its angular velocity.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE