Answer
Verified
398.8k+ views
Hint: The capacitance of a capacitor depends on its physical dimensions and the material between its plates. The capacitance increases when a dielectric is placed in the space between its plates. The energy of the capacitor depends directly on the capacitance and the electric field depends inversely on it. Since the battery remains connected, the potential difference has to remain constant for the same potential drop in the circuit.
Formula used:
Capacitance $C$ of a capacitor of plate area $A$ and distance between plates $d$ is given by
$C=\dfrac{AK{{\varepsilon }_{0}}}{d}$
where $K$ is the dielectric constant of the material between the plates and ${{\varepsilon }_{0}}$ is the permittivity of free space equal to ${{\varepsilon }_{0}}=8.854\times {{10}^{-12}}{{C}^{2}}{{N}^{-1}}{{m}^{-2}}$. For air $K=1$.
Electric field $E$ between the plates of a capacitor is given by
$E=\dfrac{Q}{AK{{\varepsilon }_{0}}}$
where $Q$ is the magnitude of charge on a plate of the capacitor with air between its plates.
The energy of the capacitor is given by
$\text{Energy = }\dfrac{1}{2}C{{V}^{2}}$
Complete step by step answer:
(i) When a dielectric is introduced inside the space between the plates of a capacitor, while the battery is still connected, the potential difference between both the plates has to remain constant, so that the algebraic sum of the potential drop in the circuit remains constant.
The dielectric gets polarized in a direction opposite to the pre-existing electric field of the capacitor and thus, produces an opposing electric field of its own, which reduces the electric field of the capacitor. Hence, the plates can accumulate more charge and the capacitance can increase, since capacitance is nothing but a measure of the amount of charge that can be stored by the capacitor when a potential difference is applied across its plates.
Capacitance $C$ of a capacitor of plate area $A$ and distance between plates $d$ is given by
$C=\dfrac{AK{{\varepsilon }_{0}}}{d}$ --(1)
where $K$ is the dielectric constant of the material between the plates and ${{\varepsilon }_{0}}$ is the permittivity of free space equal to ${{\varepsilon }_{0}}=8.854\times {{10}^{-12}}{{C}^{2}}{{N}^{-1}}{{m}^{-2}}$. For air $K=1$.
Hence, when a dielectric is introduced into the capacitor, its capacitance increases by a factor of $K$, that is, the dielectric constant of the introduced dielectric.
(ii) Electric field $E$ between the plates of a capacitor is given by
$E=\dfrac{Q}{AK{{\varepsilon }_{0}}}$ --(2)
where $Q$ is the magnitude of charge on a plate of the capacitor with air between its plates.
Now, from (2), it can be clearly seen that the electric field decreases by a factor of $\dfrac{1}{K}$ when the dielectric is introduced between the plates.
(iii) The energy of the capacitor is given by
$\text{Energy = }\dfrac{1}{2}C{{V}^{2}}$ --(3)
Now, since from (1), we can see that the capacitance increases by a factor of $K$, upon the introduction of the dielectric, since the potential difference $V$ remains constant as explained earlier, from (3), we can see that the energy of the capacitor will also increase by a factor of $K$.
Note: Students must keep in mind that since in the question, it is mentioned that the battery remains connected and the dielectric is introduced, the potential difference remains constant. However, if the capacitor was isolated and the same process was done, the problem would have to be solved by considering that the charge on the plates of the capacitor would remain constant and hence, the problem would change completely. Then in fact, the energy of the capacitor would decrease and not increase by a factor of $K$, though the capacitance would still increase. This is because the potential difference across the plates would decrease.
Formula used:
Capacitance $C$ of a capacitor of plate area $A$ and distance between plates $d$ is given by
$C=\dfrac{AK{{\varepsilon }_{0}}}{d}$
where $K$ is the dielectric constant of the material between the plates and ${{\varepsilon }_{0}}$ is the permittivity of free space equal to ${{\varepsilon }_{0}}=8.854\times {{10}^{-12}}{{C}^{2}}{{N}^{-1}}{{m}^{-2}}$. For air $K=1$.
Electric field $E$ between the plates of a capacitor is given by
$E=\dfrac{Q}{AK{{\varepsilon }_{0}}}$
where $Q$ is the magnitude of charge on a plate of the capacitor with air between its plates.
The energy of the capacitor is given by
$\text{Energy = }\dfrac{1}{2}C{{V}^{2}}$
Complete step by step answer:
(i) When a dielectric is introduced inside the space between the plates of a capacitor, while the battery is still connected, the potential difference between both the plates has to remain constant, so that the algebraic sum of the potential drop in the circuit remains constant.
The dielectric gets polarized in a direction opposite to the pre-existing electric field of the capacitor and thus, produces an opposing electric field of its own, which reduces the electric field of the capacitor. Hence, the plates can accumulate more charge and the capacitance can increase, since capacitance is nothing but a measure of the amount of charge that can be stored by the capacitor when a potential difference is applied across its plates.
Capacitance $C$ of a capacitor of plate area $A$ and distance between plates $d$ is given by
$C=\dfrac{AK{{\varepsilon }_{0}}}{d}$ --(1)
where $K$ is the dielectric constant of the material between the plates and ${{\varepsilon }_{0}}$ is the permittivity of free space equal to ${{\varepsilon }_{0}}=8.854\times {{10}^{-12}}{{C}^{2}}{{N}^{-1}}{{m}^{-2}}$. For air $K=1$.
Hence, when a dielectric is introduced into the capacitor, its capacitance increases by a factor of $K$, that is, the dielectric constant of the introduced dielectric.
(ii) Electric field $E$ between the plates of a capacitor is given by
$E=\dfrac{Q}{AK{{\varepsilon }_{0}}}$ --(2)
where $Q$ is the magnitude of charge on a plate of the capacitor with air between its plates.
Now, from (2), it can be clearly seen that the electric field decreases by a factor of $\dfrac{1}{K}$ when the dielectric is introduced between the plates.
(iii) The energy of the capacitor is given by
$\text{Energy = }\dfrac{1}{2}C{{V}^{2}}$ --(3)
Now, since from (1), we can see that the capacitance increases by a factor of $K$, upon the introduction of the dielectric, since the potential difference $V$ remains constant as explained earlier, from (3), we can see that the energy of the capacitor will also increase by a factor of $K$.
Note: Students must keep in mind that since in the question, it is mentioned that the battery remains connected and the dielectric is introduced, the potential difference remains constant. However, if the capacitor was isolated and the same process was done, the problem would have to be solved by considering that the charge on the plates of the capacitor would remain constant and hence, the problem would change completely. Then in fact, the energy of the capacitor would decrease and not increase by a factor of $K$, though the capacitance would still increase. This is because the potential difference across the plates would decrease.
Recently Updated Pages
A parallelepiped is formed by planes drawn through class 12 maths CBSE
A parallel plate capacitor with plate area A and separation class 12 physics CBSE
A parallel plate capacitor of area 60cm2 and separation class 12 physics CBSE
A parallel plate capacitor is to be designed with a class 12 physics CBSE
A parallel plate capacitor is made of two circular class 12 physics CBSE
A parallel plate capacitor is charged by a battery class 12 physics CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Differentiate between insitu conservation and exsitu class 12 biology CBSE