
A particle is free to move on x-axis, in which of the following case, the particle will execute oscillation about $x = $ ?
a) $F = (x-1)$
b) $F = - (x-1)^{2}$
c) $F = - (x-1)^{3}$
d) $F = (x-1)^{3}$
Answer
418.5k+ views
Hint: Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F =-kx^{n}$ . If n will be odd. Force should be along the positive x-axis for negative points on x-axis. Force should be along the negative x-axis for positive points on x-axis. Force should be zero for zero on x-axis. Then the particle will move to oscillate about a given point.
Complete step-by-step solution:
a) Given: $F = (x-1)$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
This equation resembles with the equation of Simple Harmonic motion. Hence, the motion is Simple Harmonic.
b) Given: $F = - (x-1)^{2}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = -ve$
In this case, motion is rectilinear motion. In rectilinear motion, particle move along a straight line.
c) Given: $F = - (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = +ve$
In this case, motion is oscillatory about $x = 1$.
d) Given: $F = (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
So, this motion is not oscillatory.
Option (c) will be correct.
Note:Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F = -k x^{n}$ . If n will be even. Force should be along the negative x-axis for negative and positive points on the x-axis. Then the particle will not oscillate about a given point but will move rectilinearly.
Complete step-by-step solution:
a) Given: $F = (x-1)$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
This equation resembles with the equation of Simple Harmonic motion. Hence, the motion is Simple Harmonic.
b) Given: $F = - (x-1)^{2}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = -ve$
In this case, motion is rectilinear motion. In rectilinear motion, particle move along a straight line.
c) Given: $F = - (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = +ve$
In this case, motion is oscillatory about $x = 1$.
d) Given: $F = (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
So, this motion is not oscillatory.
Option (c) will be correct.
Note:Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F = -k x^{n}$ . If n will be even. Force should be along the negative x-axis for negative and positive points on the x-axis. Then the particle will not oscillate about a given point but will move rectilinearly.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
