
A particle is projected vertically upwards and it reaches the maximum height $ H $ in time $ T $ seconds. The height of the particle at any time $ t $ will be
(A) $ g{(t - T)^2} $
(B) $ H - \dfrac{1}{2}g{(t - T)^2} $
(C) $ \dfrac{1}{2}g{(t - T)^2} $
(D) $ H - g{(t - T)^2} $
Answer
472.5k+ views
Hint : At the highest point, the velocity of the particle will be zero and the displacement will have the maximum value, i.e. $ H $ . We will use the formulas of projectile motion in a plane to get the required equations.
Formula used:
$\Rightarrow v = u + at $
where $ v $ is the final velocity of the particle, $ u $ is the initial velocity of the particle, $ a $ is the acceleration acting on the particle, and $ t $ is the time of action and for the calculation of the final velocity.
$\Rightarrow S = ut + \dfrac{1}{2}a{t^2} $ ,
where $ S $ is the displacement of the body and the rest of the notations are the same as in the above equation.
Complete step by step answer
Applying the formula $ v = u + at $ at the topmost point, we get
$\Rightarrow 0 = U + ( - g)T $
$ \Rightarrow U = gT $ ,
where $ U $ is the initial velocity of the particle.
Applying the formula $ S = ut + \dfrac{1}{2}a{t^2} $ at the topmost point again, we get
$\Rightarrow H = UT + \dfrac{1}{2}( - g){T^2} $
Putting the value of the initial velocity $ U $ as found above, we get
$\Rightarrow H = (gT)T - \dfrac{1}{2}g{T^2} $
$\Rightarrow H = \dfrac{1}{2}g{T^2} $ .
We will use these values in the general equation of motion $ S = ut + \dfrac{1}{2}a{t^2} $ , so that at a general height $ h $ , we get the required equation as
$\Rightarrow h = Ut + \dfrac{1}{2}( - g){t^2} $ ,
substituting $ U = gT $ , we get
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} $
Adding $ 0 = H - \dfrac{1}{2}g{T^2} $ to the above equation we get,
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} + H - \dfrac{1}{2}g{T^2} $
$\Rightarrow h = H + (gTt - \dfrac{1}{2}g{t^2} - \dfrac{1}{2}g{T^2}) $
On rearranging the equation further, we get,
$\Rightarrow h = H - \dfrac{1}{2}g( - 2Tt + {t^2} + {T^2}) $
$\Rightarrow h = H - \dfrac{1}{2}g{(t - T)^2} $
Therefore, the correct answer is option (B); $ H - \dfrac{1}{2}g{(t - T)^2} $ .
Note
The answer obtained is symmetric for a time of $ T $ before and after the value of $ t = T $ . This means that the value of the height of the particle will be the same at $ t = 0 $ and at $ t = 2T $ . This indicated that the displacement of the particle will start from $ 0 $ , reach the highest value of $ H $ at $ t = T $ , and then decrease, at the same rate of increase, to $ 0 $ at $ t = 2T $ .
Formula used:
$\Rightarrow v = u + at $
where $ v $ is the final velocity of the particle, $ u $ is the initial velocity of the particle, $ a $ is the acceleration acting on the particle, and $ t $ is the time of action and for the calculation of the final velocity.
$\Rightarrow S = ut + \dfrac{1}{2}a{t^2} $ ,
where $ S $ is the displacement of the body and the rest of the notations are the same as in the above equation.
Complete step by step answer
Applying the formula $ v = u + at $ at the topmost point, we get
$\Rightarrow 0 = U + ( - g)T $
$ \Rightarrow U = gT $ ,
where $ U $ is the initial velocity of the particle.
Applying the formula $ S = ut + \dfrac{1}{2}a{t^2} $ at the topmost point again, we get
$\Rightarrow H = UT + \dfrac{1}{2}( - g){T^2} $
Putting the value of the initial velocity $ U $ as found above, we get
$\Rightarrow H = (gT)T - \dfrac{1}{2}g{T^2} $
$\Rightarrow H = \dfrac{1}{2}g{T^2} $ .
We will use these values in the general equation of motion $ S = ut + \dfrac{1}{2}a{t^2} $ , so that at a general height $ h $ , we get the required equation as
$\Rightarrow h = Ut + \dfrac{1}{2}( - g){t^2} $ ,
substituting $ U = gT $ , we get
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} $
Adding $ 0 = H - \dfrac{1}{2}g{T^2} $ to the above equation we get,
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} + H - \dfrac{1}{2}g{T^2} $
$\Rightarrow h = H + (gTt - \dfrac{1}{2}g{t^2} - \dfrac{1}{2}g{T^2}) $
On rearranging the equation further, we get,
$\Rightarrow h = H - \dfrac{1}{2}g( - 2Tt + {t^2} + {T^2}) $
$\Rightarrow h = H - \dfrac{1}{2}g{(t - T)^2} $
Therefore, the correct answer is option (B); $ H - \dfrac{1}{2}g{(t - T)^2} $ .
Note
The answer obtained is symmetric for a time of $ T $ before and after the value of $ t = T $ . This means that the value of the height of the particle will be the same at $ t = 0 $ and at $ t = 2T $ . This indicated that the displacement of the particle will start from $ 0 $ , reach the highest value of $ H $ at $ t = T $ , and then decrease, at the same rate of increase, to $ 0 $ at $ t = 2T $ .
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
