Answer
Verified
448.5k+ views
Hint : At the highest point, the velocity of the particle will be zero and the displacement will have the maximum value, i.e. $ H $ . We will use the formulas of projectile motion in a plane to get the required equations.
Formula used:
$\Rightarrow v = u + at $
where $ v $ is the final velocity of the particle, $ u $ is the initial velocity of the particle, $ a $ is the acceleration acting on the particle, and $ t $ is the time of action and for the calculation of the final velocity.
$\Rightarrow S = ut + \dfrac{1}{2}a{t^2} $ ,
where $ S $ is the displacement of the body and the rest of the notations are the same as in the above equation.
Complete step by step answer
Applying the formula $ v = u + at $ at the topmost point, we get
$\Rightarrow 0 = U + ( - g)T $
$ \Rightarrow U = gT $ ,
where $ U $ is the initial velocity of the particle.
Applying the formula $ S = ut + \dfrac{1}{2}a{t^2} $ at the topmost point again, we get
$\Rightarrow H = UT + \dfrac{1}{2}( - g){T^2} $
Putting the value of the initial velocity $ U $ as found above, we get
$\Rightarrow H = (gT)T - \dfrac{1}{2}g{T^2} $
$\Rightarrow H = \dfrac{1}{2}g{T^2} $ .
We will use these values in the general equation of motion $ S = ut + \dfrac{1}{2}a{t^2} $ , so that at a general height $ h $ , we get the required equation as
$\Rightarrow h = Ut + \dfrac{1}{2}( - g){t^2} $ ,
substituting $ U = gT $ , we get
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} $
Adding $ 0 = H - \dfrac{1}{2}g{T^2} $ to the above equation we get,
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} + H - \dfrac{1}{2}g{T^2} $
$\Rightarrow h = H + (gTt - \dfrac{1}{2}g{t^2} - \dfrac{1}{2}g{T^2}) $
On rearranging the equation further, we get,
$\Rightarrow h = H - \dfrac{1}{2}g( - 2Tt + {t^2} + {T^2}) $
$\Rightarrow h = H - \dfrac{1}{2}g{(t - T)^2} $
Therefore, the correct answer is option (B); $ H - \dfrac{1}{2}g{(t - T)^2} $ .
Note
The answer obtained is symmetric for a time of $ T $ before and after the value of $ t = T $ . This means that the value of the height of the particle will be the same at $ t = 0 $ and at $ t = 2T $ . This indicated that the displacement of the particle will start from $ 0 $ , reach the highest value of $ H $ at $ t = T $ , and then decrease, at the same rate of increase, to $ 0 $ at $ t = 2T $ .
Formula used:
$\Rightarrow v = u + at $
where $ v $ is the final velocity of the particle, $ u $ is the initial velocity of the particle, $ a $ is the acceleration acting on the particle, and $ t $ is the time of action and for the calculation of the final velocity.
$\Rightarrow S = ut + \dfrac{1}{2}a{t^2} $ ,
where $ S $ is the displacement of the body and the rest of the notations are the same as in the above equation.
Complete step by step answer
Applying the formula $ v = u + at $ at the topmost point, we get
$\Rightarrow 0 = U + ( - g)T $
$ \Rightarrow U = gT $ ,
where $ U $ is the initial velocity of the particle.
Applying the formula $ S = ut + \dfrac{1}{2}a{t^2} $ at the topmost point again, we get
$\Rightarrow H = UT + \dfrac{1}{2}( - g){T^2} $
Putting the value of the initial velocity $ U $ as found above, we get
$\Rightarrow H = (gT)T - \dfrac{1}{2}g{T^2} $
$\Rightarrow H = \dfrac{1}{2}g{T^2} $ .
We will use these values in the general equation of motion $ S = ut + \dfrac{1}{2}a{t^2} $ , so that at a general height $ h $ , we get the required equation as
$\Rightarrow h = Ut + \dfrac{1}{2}( - g){t^2} $ ,
substituting $ U = gT $ , we get
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} $
Adding $ 0 = H - \dfrac{1}{2}g{T^2} $ to the above equation we get,
$\Rightarrow h = gTt - \dfrac{1}{2}g{t^2} + H - \dfrac{1}{2}g{T^2} $
$\Rightarrow h = H + (gTt - \dfrac{1}{2}g{t^2} - \dfrac{1}{2}g{T^2}) $
On rearranging the equation further, we get,
$\Rightarrow h = H - \dfrac{1}{2}g( - 2Tt + {t^2} + {T^2}) $
$\Rightarrow h = H - \dfrac{1}{2}g{(t - T)^2} $
Therefore, the correct answer is option (B); $ H - \dfrac{1}{2}g{(t - T)^2} $ .
Note
The answer obtained is symmetric for a time of $ T $ before and after the value of $ t = T $ . This means that the value of the height of the particle will be the same at $ t = 0 $ and at $ t = 2T $ . This indicated that the displacement of the particle will start from $ 0 $ , reach the highest value of $ H $ at $ t = T $ , and then decrease, at the same rate of increase, to $ 0 $ at $ t = 2T $ .
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE