Answer
Verified
489.3k+ views
Hint: The angular velocity as a function of time can be found out by differentiating angular displacement $\theta $ with respect to time.
Before proceeding with the question, we must know that the angular velocity (which is generally denoted by $\omega $) as a function of time can be found by simply differentiating the angular displacement $\theta $ with respect to time. Mathematically, we get,
$\omega =\dfrac{d\theta }{dt}............\left( 1 \right)$
Here, in this formula, $\theta $ should be a function of time $t$.
In this question, it is given that $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$. Substituting $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$ in equation $\left( 1 \right)$, we can find angular velocity as a function of time.
$\begin{align}
& \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20}+\dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20} \right)}{dt}+\dfrac{d\left( \dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{1}{20}\dfrac{d\left( {{t}^{2}} \right)}{dt}+\dfrac{1}{5}\dfrac{d\left( t \right)}{dt}...............\left( 2 \right) \\
\end{align}$
In differentiation, we have a formula,
$\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t...........\left( 3 \right)$
Substituting $\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t$ from equation$\left( 3 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& \omega =\dfrac{1}{20}\left( 2t \right)+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{t}{10}+\dfrac{1}{5}...........\left( 4 \right) \\
\end{align}$
In the question, it is given that the angular velocity $\omega $ at $t=4s$ is equal to $k$. Substituting $t=4s$in equation $\left( 4 \right)$, we get,
$\begin{align}
& \omega =\dfrac{4}{10}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{2}{5}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{3}{5} \\
\end{align}$
This angular velocity which we got in the above equation is equal to $k$, so, we can say,
$k=\dfrac{3}{5}..........\left( 5 \right)$
In the question, we are asked to find out the value of $5k$. So, using equation $\left( 5 \right)$, the value of $5k$ is equal to,
$\begin{align}
& 5k=5\left( \dfrac{3}{5} \right) \\
& \Rightarrow 5k=3 \\
\end{align}$
Hence, the answer is $3$.
Note: There is a possibility that one may commit a mistake while finding the angular velocity $\omega $ as a function of time. Sometimes, we integrate the angular displacement $\theta $ with respect to time to find the angular velocity instead of differentiating the angular displacement. So one must remember that angular velocity is found by differentiating the angular displacement function with respect to time
Before proceeding with the question, we must know that the angular velocity (which is generally denoted by $\omega $) as a function of time can be found by simply differentiating the angular displacement $\theta $ with respect to time. Mathematically, we get,
$\omega =\dfrac{d\theta }{dt}............\left( 1 \right)$
Here, in this formula, $\theta $ should be a function of time $t$.
In this question, it is given that $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$. Substituting $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$ in equation $\left( 1 \right)$, we can find angular velocity as a function of time.
$\begin{align}
& \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20}+\dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20} \right)}{dt}+\dfrac{d\left( \dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{1}{20}\dfrac{d\left( {{t}^{2}} \right)}{dt}+\dfrac{1}{5}\dfrac{d\left( t \right)}{dt}...............\left( 2 \right) \\
\end{align}$
In differentiation, we have a formula,
$\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t...........\left( 3 \right)$
Substituting $\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t$ from equation$\left( 3 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& \omega =\dfrac{1}{20}\left( 2t \right)+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{t}{10}+\dfrac{1}{5}...........\left( 4 \right) \\
\end{align}$
In the question, it is given that the angular velocity $\omega $ at $t=4s$ is equal to $k$. Substituting $t=4s$in equation $\left( 4 \right)$, we get,
$\begin{align}
& \omega =\dfrac{4}{10}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{2}{5}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{3}{5} \\
\end{align}$
This angular velocity which we got in the above equation is equal to $k$, so, we can say,
$k=\dfrac{3}{5}..........\left( 5 \right)$
In the question, we are asked to find out the value of $5k$. So, using equation $\left( 5 \right)$, the value of $5k$ is equal to,
$\begin{align}
& 5k=5\left( \dfrac{3}{5} \right) \\
& \Rightarrow 5k=3 \\
\end{align}$
Hence, the answer is $3$.
Note: There is a possibility that one may commit a mistake while finding the angular velocity $\omega $ as a function of time. Sometimes, we integrate the angular displacement $\theta $ with respect to time to find the angular velocity instead of differentiating the angular displacement. So one must remember that angular velocity is found by differentiating the angular displacement function with respect to time
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE