Answer
Verified
498.6k+ views
Hint: The angular velocity as a function of time can be found out by differentiating angular displacement $\theta $ with respect to time.
Before proceeding with the question, we must know that the angular velocity (which is generally denoted by $\omega $) as a function of time can be found by simply differentiating the angular displacement $\theta $ with respect to time. Mathematically, we get,
$\omega =\dfrac{d\theta }{dt}............\left( 1 \right)$
Here, in this formula, $\theta $ should be a function of time $t$.
In this question, it is given that $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$. Substituting $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$ in equation $\left( 1 \right)$, we can find angular velocity as a function of time.
$\begin{align}
& \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20}+\dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20} \right)}{dt}+\dfrac{d\left( \dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{1}{20}\dfrac{d\left( {{t}^{2}} \right)}{dt}+\dfrac{1}{5}\dfrac{d\left( t \right)}{dt}...............\left( 2 \right) \\
\end{align}$
In differentiation, we have a formula,
$\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t...........\left( 3 \right)$
Substituting $\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t$ from equation$\left( 3 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& \omega =\dfrac{1}{20}\left( 2t \right)+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{t}{10}+\dfrac{1}{5}...........\left( 4 \right) \\
\end{align}$
In the question, it is given that the angular velocity $\omega $ at $t=4s$ is equal to $k$. Substituting $t=4s$in equation $\left( 4 \right)$, we get,
$\begin{align}
& \omega =\dfrac{4}{10}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{2}{5}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{3}{5} \\
\end{align}$
This angular velocity which we got in the above equation is equal to $k$, so, we can say,
$k=\dfrac{3}{5}..........\left( 5 \right)$
In the question, we are asked to find out the value of $5k$. So, using equation $\left( 5 \right)$, the value of $5k$ is equal to,
$\begin{align}
& 5k=5\left( \dfrac{3}{5} \right) \\
& \Rightarrow 5k=3 \\
\end{align}$
Hence, the answer is $3$.
Note: There is a possibility that one may commit a mistake while finding the angular velocity $\omega $ as a function of time. Sometimes, we integrate the angular displacement $\theta $ with respect to time to find the angular velocity instead of differentiating the angular displacement. So one must remember that angular velocity is found by differentiating the angular displacement function with respect to time
Before proceeding with the question, we must know that the angular velocity (which is generally denoted by $\omega $) as a function of time can be found by simply differentiating the angular displacement $\theta $ with respect to time. Mathematically, we get,
$\omega =\dfrac{d\theta }{dt}............\left( 1 \right)$
Here, in this formula, $\theta $ should be a function of time $t$.
In this question, it is given that $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$. Substituting $\theta =\dfrac{{{t}^{2}}}{20}+\dfrac{t}{5}$ in equation $\left( 1 \right)$, we can find angular velocity as a function of time.
$\begin{align}
& \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20}+\dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{d\left( \dfrac{{{t}^{2}}}{20} \right)}{dt}+\dfrac{d\left( \dfrac{t}{5} \right)}{dt} \\
& \Rightarrow \omega =\dfrac{1}{20}\dfrac{d\left( {{t}^{2}} \right)}{dt}+\dfrac{1}{5}\dfrac{d\left( t \right)}{dt}...............\left( 2 \right) \\
\end{align}$
In differentiation, we have a formula,
$\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t...........\left( 3 \right)$
Substituting $\dfrac{d\left( {{t}^{2}} \right)}{dt}=2t$ from equation$\left( 3 \right)$ in equation $\left( 2 \right)$, we get,
$\begin{align}
& \omega =\dfrac{1}{20}\left( 2t \right)+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{t}{10}+\dfrac{1}{5}...........\left( 4 \right) \\
\end{align}$
In the question, it is given that the angular velocity $\omega $ at $t=4s$ is equal to $k$. Substituting $t=4s$in equation $\left( 4 \right)$, we get,
$\begin{align}
& \omega =\dfrac{4}{10}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{2}{5}+\dfrac{1}{5} \\
& \Rightarrow \omega =\dfrac{3}{5} \\
\end{align}$
This angular velocity which we got in the above equation is equal to $k$, so, we can say,
$k=\dfrac{3}{5}..........\left( 5 \right)$
In the question, we are asked to find out the value of $5k$. So, using equation $\left( 5 \right)$, the value of $5k$ is equal to,
$\begin{align}
& 5k=5\left( \dfrac{3}{5} \right) \\
& \Rightarrow 5k=3 \\
\end{align}$
Hence, the answer is $3$.
Note: There is a possibility that one may commit a mistake while finding the angular velocity $\omega $ as a function of time. Sometimes, we integrate the angular displacement $\theta $ with respect to time to find the angular velocity instead of differentiating the angular displacement. So one must remember that angular velocity is found by differentiating the angular displacement function with respect to time
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE