A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when the 8th set of letters is mailed.
Answer
Verified
504.3k+ views
Hint: In this question each person writes four letters to four different persons. And this process continues i.e., this process is in a sequence. Since all the common terms have the same ratio this progression is in geometric progression.
Complete step-by-step answer:
According to this question, one person writes a letter to his 4 friends.
Now each of these 4 friends will write letters to their 4 different friends. So, the number of letters written here will be \[{4^2}\]
And this process continues………
So, the number of letters written forms a geometric progression (G.P)
i.e., \[4,{4^2},{4^3},......,{4^8}\]
We know that if a series is in geometric progression (G.P) of ‘\[n\]’ terms, with first term ‘\[a\]’ and common ratio ‘\[r\]’ then the sum of the series is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].
Since we have to find the cost of 8 set of letters, we have \[a = 4,r = 4,n = 8\]
So, \[{S_n} = \dfrac{{4\left( {{4^8} - 1} \right)}}{{4 - 1}}\]
\[
{S_8} = \dfrac{{4\left( {65536 - 1} \right)}}{3} \\
{S_8} = \dfrac{{4\left( {65535} \right)}}{3} \\
{S_8} = \dfrac{{262140}}{3} \\
{S_8} = 87380 \\
\]
Given each mail costs 50 paise, then 87380 letters costs \[{\text{Rs }}\dfrac{{50}}{{100}} \times 87380 = {\text{Rs }}43690\]
Thus, the amount spent on postage when 8th set of letters mailed is Rs.43690
Note: In this problem we have converted 50 paise into rupees by the conversion 1 rupee equals to 100 paise. Always remember that the above used formula for the summation of the terms in geometric progression (G.P) is valid only when the common ratio is greater than one.
Complete step-by-step answer:
According to this question, one person writes a letter to his 4 friends.
Now each of these 4 friends will write letters to their 4 different friends. So, the number of letters written here will be \[{4^2}\]
And this process continues………
So, the number of letters written forms a geometric progression (G.P)
i.e., \[4,{4^2},{4^3},......,{4^8}\]
We know that if a series is in geometric progression (G.P) of ‘\[n\]’ terms, with first term ‘\[a\]’ and common ratio ‘\[r\]’ then the sum of the series is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].
Since we have to find the cost of 8 set of letters, we have \[a = 4,r = 4,n = 8\]
So, \[{S_n} = \dfrac{{4\left( {{4^8} - 1} \right)}}{{4 - 1}}\]
\[
{S_8} = \dfrac{{4\left( {65536 - 1} \right)}}{3} \\
{S_8} = \dfrac{{4\left( {65535} \right)}}{3} \\
{S_8} = \dfrac{{262140}}{3} \\
{S_8} = 87380 \\
\]
Given each mail costs 50 paise, then 87380 letters costs \[{\text{Rs }}\dfrac{{50}}{{100}} \times 87380 = {\text{Rs }}43690\]
Thus, the amount spent on postage when 8th set of letters mailed is Rs.43690
Note: In this problem we have converted 50 paise into rupees by the conversion 1 rupee equals to 100 paise. Always remember that the above used formula for the summation of the terms in geometric progression (G.P) is valid only when the common ratio is greater than one.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE