Answer
Verified
455.1k+ views
Hint: In this problem, first calculate the frequency of the cork by substituting the given values in the formula and then by using the calculated value of the frequency, find the maximum velocity of the cork.
Complete step-by-step solution:
As we know that the angular frequency is a frequency of a steadily recurring phenomenon, and it is expressed in radians per second.
The formula to calculate the angular frequency is given by, $\omega = 2\pi f$.
Here, $f$ is a linear frequency. We can define the linear frequency as the number of complete oscillations in each period, and it is expressed in hertz.
Now, substitute $2\pi f$ for $\omega $ in the equation ${v_{\max }} = \omega A$ to get the formula for ${v_{\max }}$ as,
${v_{\max }} = 2\pi fA$
Here, $A$ is the amplitude and it can be defined as the maximum extent of a vibration or oscillation, measured from the position of equilibrium and it is expressed in mm or m.
The formula to calculate the linear frequency is given by, $f = \dfrac{u}{\lambda }$.
Here, $\lambda $ is the wavelength which is defined as the distance measured between repeated crests of a wave, especially in case of a sound wave or electromagnetic wave, and $u$ is the velocity of ripples.
In the given problem, velocity of the ripple is $0.21\;{\text{m}}{{\text{s}}^{ - 1}}$, wavelength is \[15{\text{ mm}}\], and amplitude is \[5{\text{ mm}}\].
Now, find the linear frequency of the piece of cork by substituting $0.21\;{\text{m}}{{\text{s}}^{ - 1}}$ for $u$, and $0.015\;{\text{m}}$ for $\lambda $ in the formula as,
$
f = \dfrac{u}{\lambda } \\
= \dfrac{{0.21}}{{0.015}} \\
= 14\;{\text{Hz}} \\
$
Similarly, find the maximum velocity of the piece of cork by Substituting $\dfrac{{22}}{7}$ for $\pi $, $14\;{\text{Hz}}$ for $f$, and $0.005\;{\text{m}}$ for $A$ in the formula ${v_{\max }} = 2\pi fA$.
$
{v_{\max }} = 2\pi fA \\
= 2\left( {\dfrac{{22}}{7}} \right)\left( {14} \right)\left( {0.005} \right) \\
= 0.44\;{\text{m/s}} \\
$
Therefore, the maximum velocity of the piece of cork is $0.44\;{\text{m/s}}$.
Note:- Make sure that the maximum velocity of the piece of cork is the product of angular frequency, and amplitude where angular frequency is given by $\omega = 2\pi f$, and use the formula $f = \dfrac{u}{\lambda }$ to find the linear frequency.
Complete step-by-step solution:
As we know that the angular frequency is a frequency of a steadily recurring phenomenon, and it is expressed in radians per second.
The formula to calculate the angular frequency is given by, $\omega = 2\pi f$.
Here, $f$ is a linear frequency. We can define the linear frequency as the number of complete oscillations in each period, and it is expressed in hertz.
Now, substitute $2\pi f$ for $\omega $ in the equation ${v_{\max }} = \omega A$ to get the formula for ${v_{\max }}$ as,
${v_{\max }} = 2\pi fA$
Here, $A$ is the amplitude and it can be defined as the maximum extent of a vibration or oscillation, measured from the position of equilibrium and it is expressed in mm or m.
The formula to calculate the linear frequency is given by, $f = \dfrac{u}{\lambda }$.
Here, $\lambda $ is the wavelength which is defined as the distance measured between repeated crests of a wave, especially in case of a sound wave or electromagnetic wave, and $u$ is the velocity of ripples.
In the given problem, velocity of the ripple is $0.21\;{\text{m}}{{\text{s}}^{ - 1}}$, wavelength is \[15{\text{ mm}}\], and amplitude is \[5{\text{ mm}}\].
Now, find the linear frequency of the piece of cork by substituting $0.21\;{\text{m}}{{\text{s}}^{ - 1}}$ for $u$, and $0.015\;{\text{m}}$ for $\lambda $ in the formula as,
$
f = \dfrac{u}{\lambda } \\
= \dfrac{{0.21}}{{0.015}} \\
= 14\;{\text{Hz}} \\
$
Similarly, find the maximum velocity of the piece of cork by Substituting $\dfrac{{22}}{7}$ for $\pi $, $14\;{\text{Hz}}$ for $f$, and $0.005\;{\text{m}}$ for $A$ in the formula ${v_{\max }} = 2\pi fA$.
$
{v_{\max }} = 2\pi fA \\
= 2\left( {\dfrac{{22}}{7}} \right)\left( {14} \right)\left( {0.005} \right) \\
= 0.44\;{\text{m/s}} \\
$
Therefore, the maximum velocity of the piece of cork is $0.44\;{\text{m/s}}$.
Note:- Make sure that the maximum velocity of the piece of cork is the product of angular frequency, and amplitude where angular frequency is given by $\omega = 2\pi f$, and use the formula $f = \dfrac{u}{\lambda }$ to find the linear frequency.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Constitution of India was adopted on A 26 November class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE