A piece of metal weighs 45 g in air and 25 g in a liquid of density \[1.5 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\] kept at \[30\;^\circ {\rm{C}}\]. When the temperature of the liquid is raised to \[40\;^\circ {\rm{C}}\] , the metal piece weighs 27 g. The density of liquid at \[40\;^\circ {\rm{C}}\] is \[1.25 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\]. The coefficient of linear expansion of metal is
A. \[1.3 \times {10^{ - 3}}\;/C\]
B. \[5.2 \times {10^{ - 3}}\;/C\]
C. \[2.6 \times {10^{ - 3}}\;/C\]
D. \[0.26 \times {10^{ - 3}}\;/C\]
Answer
Verified
479.4k+ views
Hint: The mathematical relation for the volume of metal at any specific temperature is used to resolve the problem. Moreover, the formula for coefficient of linear expansion of metal is also used.
Complete step by step answer:
Given:
Weight of metal in air is, \[{W_1} = 45\;{\rm{g}}\].
Weight of metal in liquid is, \[{W_2} = 25\;{\rm{g}}\].
The initial temperature is, \[{T_1} = 30\;{\rm{^\circ C}}\].
Density of liquid at \[30\;^\circ {\rm{C}}\] is, \[{\rho _1} = 1.5 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\]
The final temperature is, \[{T_2} = 40\;{\rm{^\circ C}}\].
Density of liquid at \[40\;^\circ {\rm{C}}\] is, \[{\rho _2} = 1.25 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\].
Weight of metal in liquid at \[40\;^\circ {\rm{C}}\] is, \[{W_3} = 27\;{\rm{g}}\].
The formula for the coefficient of linear expansion \[\left( \alpha \right)\] is given as,
\[\begin{array}{l}
{V_2} = {V_1}\left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right]\\
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right].........................................\left( 1 \right)
\end{array}\]
Here, \[{V_2}\] and \[{V_1}\] are the volume at \[30\;^\circ {\rm{C}}\] and \[40\;^\circ {\rm{C}}\] .
The ratio of \[{V_2}\] and \[{V_1}\] is given as,
\[\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\]
Substituting the values as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{45\;{\rm{g}} - 27\;{\rm{g}}}}{{45\;{\rm{g}} - 25\;{\rm{g}}}}} \right) \times \dfrac{{1.25 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}{{1.5 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = 0.75
\end{array}\]
Solve by substituting the above value in equation 1 as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3a\left( {{T_2} - {T_1}} \right)} \right]\\
0.75 = 1 + 3 \times \alpha \left( {40\;{\rm{^\circ C}} - 30\;{\rm{^\circ C}}} \right)\\
\alpha = 2.6 \times {10^{ - 3}}\;/^\circ {\rm{C}}
\end{array}\]
Therefore, the required coefficient of linear expansion of metal is \[2.6 \times {10^{ - 3}}\;/{\rm{^\circ C}}\]
So, the correct answer is “Option C”.
Note:
The concept and the mathematical relation for the coefficient of linear expansion with the volume change is to be remembered. Moreover, the mathematical relation for the ratio of change in volume is to be known.
Complete step by step answer:
Given:
Weight of metal in air is, \[{W_1} = 45\;{\rm{g}}\].
Weight of metal in liquid is, \[{W_2} = 25\;{\rm{g}}\].
The initial temperature is, \[{T_1} = 30\;{\rm{^\circ C}}\].
Density of liquid at \[30\;^\circ {\rm{C}}\] is, \[{\rho _1} = 1.5 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\]
The final temperature is, \[{T_2} = 40\;{\rm{^\circ C}}\].
Density of liquid at \[40\;^\circ {\rm{C}}\] is, \[{\rho _2} = 1.25 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\].
Weight of metal in liquid at \[40\;^\circ {\rm{C}}\] is, \[{W_3} = 27\;{\rm{g}}\].
The formula for the coefficient of linear expansion \[\left( \alpha \right)\] is given as,
\[\begin{array}{l}
{V_2} = {V_1}\left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right]\\
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right].........................................\left( 1 \right)
\end{array}\]
Here, \[{V_2}\] and \[{V_1}\] are the volume at \[30\;^\circ {\rm{C}}\] and \[40\;^\circ {\rm{C}}\] .
The ratio of \[{V_2}\] and \[{V_1}\] is given as,
\[\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\]
Substituting the values as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{45\;{\rm{g}} - 27\;{\rm{g}}}}{{45\;{\rm{g}} - 25\;{\rm{g}}}}} \right) \times \dfrac{{1.25 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}{{1.5 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = 0.75
\end{array}\]
Solve by substituting the above value in equation 1 as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3a\left( {{T_2} - {T_1}} \right)} \right]\\
0.75 = 1 + 3 \times \alpha \left( {40\;{\rm{^\circ C}} - 30\;{\rm{^\circ C}}} \right)\\
\alpha = 2.6 \times {10^{ - 3}}\;/^\circ {\rm{C}}
\end{array}\]
Therefore, the required coefficient of linear expansion of metal is \[2.6 \times {10^{ - 3}}\;/{\rm{^\circ C}}\]
So, the correct answer is “Option C”.
Note:
The concept and the mathematical relation for the coefficient of linear expansion with the volume change is to be remembered. Moreover, the mathematical relation for the ratio of change in volume is to be known.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE