
A piece of wire 20 cm long is bent into the form of an arc of a circle subtending an angle of 60 degrees at its centre. Then the radius of the circle is
A. \[\dfrac{60}{\pi }cm\]
B. \[\dfrac{120}{\pi }cm\]
C. \[\dfrac{30}{\pi }cm\]
D. \[\dfrac{90}{\pi }cm\]
Answer
589.2k+ views
Hint: Use the arc length formula that is given as: \[arc\,\,length\,\,=\dfrac{\theta }{{{360}^{o}}}\times \left( 2\pi r \right)\]. Here \[\theta \] is the angle subtended at the centre of the circle, r is the radius of the circle. Also, the arc length is the same as the length of the wire.
Complete step-by-step solution -
In the question, we have to find the radius (r) of the circle.
We are given that a piece of wire 20 cm long is bent into the form of an arc of a circle subtending an angle of 60 degrees at its centre. So, here the arc length will be the same as 20 cm, as shown in the figure below.
Next, we know the arc length formula as \[arc\,\,length\,\,=\dfrac{\theta }{{{360}^{o}}}\times \left( 2\pi r \right)\], here \[\theta \] is the angle subtended at the centre of the circle. So we have: \[\theta ={{60}^{o}}\] and \[arc\,\,length\,\,=20\,\,cm\]. So using the formula we will find the radius of the circle, as shown below:
\[\begin{align}
& \Rightarrow arc\,\,length\,\,=\dfrac{\theta }{{{360}^{o}}}\times \left( 2\pi r \right) \\
& \Rightarrow 20=\dfrac{{{60}^{o}}}{{{360}^{o}}}\times \left( 2\pi r \right) \\
& \Rightarrow 20=\dfrac{1}{6}\times \left( 2\pi r \right) \\
& \Rightarrow 60=\left( \pi r \right) \\
& \Rightarrow r=\dfrac{60}{\pi } \\
\end{align}\]
So we get the required radius of the circle as \[r=\dfrac{60}{\pi }cm\]. Hence, the correct answer is option A.
Note: Keep in mind that all the lengths are to be in the same unit. For example, if cm is used then all are to be in cm only. Also, the angle \[\theta \] is to be in degrees and not in radians. Sometimes students make mistakes by adding 2r in the arc length which is wrong as we use this approach when there is asked about the segment of a circle.
Complete step-by-step solution -
In the question, we have to find the radius (r) of the circle.
We are given that a piece of wire 20 cm long is bent into the form of an arc of a circle subtending an angle of 60 degrees at its centre. So, here the arc length will be the same as 20 cm, as shown in the figure below.
Next, we know the arc length formula as \[arc\,\,length\,\,=\dfrac{\theta }{{{360}^{o}}}\times \left( 2\pi r \right)\], here \[\theta \] is the angle subtended at the centre of the circle. So we have: \[\theta ={{60}^{o}}\] and \[arc\,\,length\,\,=20\,\,cm\]. So using the formula we will find the radius of the circle, as shown below:
\[\begin{align}
& \Rightarrow arc\,\,length\,\,=\dfrac{\theta }{{{360}^{o}}}\times \left( 2\pi r \right) \\
& \Rightarrow 20=\dfrac{{{60}^{o}}}{{{360}^{o}}}\times \left( 2\pi r \right) \\
& \Rightarrow 20=\dfrac{1}{6}\times \left( 2\pi r \right) \\
& \Rightarrow 60=\left( \pi r \right) \\
& \Rightarrow r=\dfrac{60}{\pi } \\
\end{align}\]
So we get the required radius of the circle as \[r=\dfrac{60}{\pi }cm\]. Hence, the correct answer is option A.
Note: Keep in mind that all the lengths are to be in the same unit. For example, if cm is used then all are to be in cm only. Also, the angle \[\theta \] is to be in degrees and not in radians. Sometimes students make mistakes by adding 2r in the arc length which is wrong as we use this approach when there is asked about the segment of a circle.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

