Answer
Verified
462.9k+ views
Hint: Volume of water flowing per second through the first pipe is same as the volume of water flowing per second from all the holes
Step by step answer: The pipe whose internal diameter is D is connected to another pipe of the same size. Water from the first pipe enters the second pipe through n holes each having diameter d. The velocity of water flowing in the first pipe is v and let the velocity of water leaving through each hole be vse , R be the radius of the first pipe and r be the radius of each hole.
Area of cross section of first pipe (A)=$\pi {R^2}$
$\pi {\left( {\dfrac{D}{2}} \right)^2} = \left[ {radius = \dfrac{{diameter}}{2}} \right]$
Area of cross section of each hole (a) = $\pi {r^2} = \pi {\left( {\dfrac{d}{2}} \right)^2}$
Volume of water flowing per second through First pipe = Av$\left[ {volume = area \times velocity} \right]$
Mass of water flowing per second through first pipe = $volume \times density$
$Av \times \rho $ where ρ is the density of water
Volume of water flowing per second through each hole = $a\left( {vse} \right)$
Mass of water flowing per second through n number of holes = $n \times a \times vse \times \rho $
The equation $Av = a\left( {vse} \right)$is known as the equation of continuity.
As there are no sources or sinks in the pipe where water can be created or destroyed. So, the mass of water flowing per second is the same. Hence , $A \times v \times \rho = n \times a \times vse \times \rho $
${\left( {\dfrac{D}{2}} \right)^2}v = n{\left( {\dfrac{d}{2}} \right)^2}vse$
$\Rightarrow$ $\dfrac{{{D^2} \times v}}{4} = \left( {\dfrac{{n \times {d^2} \times v}}{4}} \right)vse$
$\Rightarrow$ $vse = \dfrac{{v \times {D^2} \times 4}}{{n \times {d^2} \times 4}}$
$\therefore$ $vse = \dfrac{{v \times {D^2}}}{{n \times {d^2}}}$ $ = \dfrac{{v{D^2}}}{{n{d^2}}}$
The velocity of water flowing through the second pipe is the same as the velocity of water through the hole.
Therefore, option A is correct.
Note: Since the mass of water flowing through the first pipe and n number of holes are the same. So, the mass of water flowing per second in both the cases is the same.
Step by step answer: The pipe whose internal diameter is D is connected to another pipe of the same size. Water from the first pipe enters the second pipe through n holes each having diameter d. The velocity of water flowing in the first pipe is v and let the velocity of water leaving through each hole be vse , R be the radius of the first pipe and r be the radius of each hole.
Area of cross section of first pipe (A)=$\pi {R^2}$
$\pi {\left( {\dfrac{D}{2}} \right)^2} = \left[ {radius = \dfrac{{diameter}}{2}} \right]$
Area of cross section of each hole (a) = $\pi {r^2} = \pi {\left( {\dfrac{d}{2}} \right)^2}$
Volume of water flowing per second through First pipe = Av$\left[ {volume = area \times velocity} \right]$
Mass of water flowing per second through first pipe = $volume \times density$
$Av \times \rho $ where ρ is the density of water
Volume of water flowing per second through each hole = $a\left( {vse} \right)$
Mass of water flowing per second through n number of holes = $n \times a \times vse \times \rho $
The equation $Av = a\left( {vse} \right)$is known as the equation of continuity.
As there are no sources or sinks in the pipe where water can be created or destroyed. So, the mass of water flowing per second is the same. Hence , $A \times v \times \rho = n \times a \times vse \times \rho $
${\left( {\dfrac{D}{2}} \right)^2}v = n{\left( {\dfrac{d}{2}} \right)^2}vse$
$\Rightarrow$ $\dfrac{{{D^2} \times v}}{4} = \left( {\dfrac{{n \times {d^2} \times v}}{4}} \right)vse$
$\Rightarrow$ $vse = \dfrac{{v \times {D^2} \times 4}}{{n \times {d^2} \times 4}}$
$\therefore$ $vse = \dfrac{{v \times {D^2}}}{{n \times {d^2}}}$ $ = \dfrac{{v{D^2}}}{{n{d^2}}}$
The velocity of water flowing through the second pipe is the same as the velocity of water through the hole.
Therefore, option A is correct.
Note: Since the mass of water flowing through the first pipe and n number of holes are the same. So, the mass of water flowing per second in both the cases is the same.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE