Answer
Verified
469.2k+ views
Hint: Use the formula:
\[v = u + at\] and find the horizontal and vertical component of velocity.
Use the formula:
\[\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}}\] to find the angle.
Complete step by step solution:
In this given problem, the plane is flying horizontally, whose velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\]. During the flight, it suddenly drops an object from it. The object does not fall horizontally, rather it will move at an inclination with the horizontal.
Let the angle at which the object falls to the ground be \[\theta \].
In the figure, the initial and the final velocity of the horizontal motion are indicated along with the initial and final velocity of the vertical motion.
\[{u_X}\] indicates the initial velocity along the horizontal motion.
\[{v_X}\] indicates the final velocity along the horizontal motion.
\[{u_Y}\] indicates the initial velocity along the vertical motion.
\[{v_Y}\] indicates the final velocity along the vertical motion.
Applying the formula, along the vertical component:
\[{u_X} = 100\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 0\] and \[t = 10\,{\text{s}}\]
\[
{v_X} = {u_X} + {a_X}t \\
= 100 + 0 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
Applying the formula, along the horizontal component:
\[{u_Y} = 0\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 10\,{\text{m}}{{\text{s}}^{ - 2}}\] and \[t = 10\,{\text{s}}\]
\[
{v_Y} = {u_Y} + {a_Y}t \\
= 0 + 10 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
The horizontal component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\] and the vertical component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\].
To find angle at which the object hits the ground:
Find tangent:
\[
\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}} \\
\tan \theta = \,\,\dfrac{{100}}{{100}} \\
\tan \theta = \,\,1 \\
\theta = \,\,{\tan ^{ - 1}}\left( 1 \right) \\
\]
\[\theta = 45^\circ \]
The angle at which the object hits the ground is \[45^\circ \].
Note: In this problem, you are asked to find the angle at which the object hits the ground. For this, you have to take the vertical and the horizontal component separately. While calculating the horizontal component of velocity, take acceleration due to gravity as zero, as the gravitational pull does not act along the horizontal direction.
\[v = u + at\] and find the horizontal and vertical component of velocity.
Use the formula:
\[\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}}\] to find the angle.
Complete step by step solution:
In this given problem, the plane is flying horizontally, whose velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\]. During the flight, it suddenly drops an object from it. The object does not fall horizontally, rather it will move at an inclination with the horizontal.
Let the angle at which the object falls to the ground be \[\theta \].
In the figure, the initial and the final velocity of the horizontal motion are indicated along with the initial and final velocity of the vertical motion.
\[{u_X}\] indicates the initial velocity along the horizontal motion.
\[{v_X}\] indicates the final velocity along the horizontal motion.
\[{u_Y}\] indicates the initial velocity along the vertical motion.
\[{v_Y}\] indicates the final velocity along the vertical motion.
Applying the formula, along the vertical component:
\[{u_X} = 100\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 0\] and \[t = 10\,{\text{s}}\]
\[
{v_X} = {u_X} + {a_X}t \\
= 100 + 0 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
Applying the formula, along the horizontal component:
\[{u_Y} = 0\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 10\,{\text{m}}{{\text{s}}^{ - 2}}\] and \[t = 10\,{\text{s}}\]
\[
{v_Y} = {u_Y} + {a_Y}t \\
= 0 + 10 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
The horizontal component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\] and the vertical component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\].
To find angle at which the object hits the ground:
Find tangent:
\[
\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}} \\
\tan \theta = \,\,\dfrac{{100}}{{100}} \\
\tan \theta = \,\,1 \\
\theta = \,\,{\tan ^{ - 1}}\left( 1 \right) \\
\]
\[\theta = 45^\circ \]
The angle at which the object hits the ground is \[45^\circ \].
Note: In this problem, you are asked to find the angle at which the object hits the ground. For this, you have to take the vertical and the horizontal component separately. While calculating the horizontal component of velocity, take acceleration due to gravity as zero, as the gravitational pull does not act along the horizontal direction.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE