![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Answer
460.5k+ views
Hint: First, find the distance at which the image reflected by the concave mirror is formed. Next, you should understand that the image formed by the plane mirror is halfway from the plane mirror. This means that the object is also at the same distance. Using this logic, we can find the separation between the mirrors.
Formula used:
$\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}$
Complete answer:
Let’s draw a simple sketch from the information given in the question for a better understanding.
From the diagram, you should be able to understand that the incident rays from $O$ are reflected onto the plane mirror. This forms an image in the plane mirror, which we’ll be calling ${I_1}$. Now this image ${I_1}$ will act as the object for the plane mirror. So, its reflection forms an image ${I_2}$ again at $O$, as per the question. Let’s assume ‘$x$’ to be the distance between the mirrors and the object is placed at the center of them, say $\dfrac{x}{2}$.
Now, based on the diagram we can easily solve the question.
We have the mirror formula as,
$\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}$
Where,
$f$ is the focal distance
$u$ is the object distance
$v$ is the image distance
They’ve given the radius of curvature of the concave mirror as $60cm$, so the focal length is $f = - 30cm$. The negative sign indicates that distances are measured from the pole, opposite to the direction of incident rays. Similarly, the object is placed at the center of two mirrors, so we have $u = - \dfrac{x}{2}$.
Substituting these values in the mirror equation, we have
$\eqalign{
& \dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v} \cr
& \Rightarrow \dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u} \cr
& \Rightarrow \dfrac{1}{v} = \dfrac{1}{{ - 30}} - \dfrac{1}{{ - \dfrac{x}{2}}} \cr
& \Rightarrow \dfrac{1}{v} = \dfrac{1}{{ - 30}} + \dfrac{2}{x} \cr
& \Rightarrow v = \dfrac{{ - 30x}}{{x - 60}} \cr} $
The image ${I_1}$ is formed at this distance from the concave mirror. This image ${I_1}$ acts as an object for the plane mirror. Now, they’ve given in the question, that the plane mirror forms the image ${I_2}$ at $O$. From this, we need to understand that the object ${I_1}$ is at $\dfrac{x}{2}$ distance from the plane mirror as it forms its image ${I_2}$ at $\dfrac{x}{2}$ distance. So, the actual distance of ${I_1}$ from the concave mirror will be
Now the distance of ${I_1}$ from the concave mirror will be $x + \dfrac{x}{2}$.
Equating this to the result we’ve obtained,
$\eqalign{
& x + \dfrac{x}{2} = \left| v \right| \cr
& \Rightarrow x + \dfrac{x}{2} = \dfrac{{30x}}{{x - 60}} \cr
& \Rightarrow \dfrac{{3x}}{2} = \dfrac{{30x}}{{x - 60}} \cr
& \Rightarrow \dfrac{1}{2} = \dfrac{{10}}{{x - 60}} \cr
& \Rightarrow x - 60 = 20 \cr
& \Rightarrow x = 80 \cr
& \therefore x = 80cm \cr} $
So, the correct answer is “Option B ”.
Note:
One must understand that the image formed by the concave mirror, is inside the plane mirror. This image acts as a virtual object for the plane mirror. Hence, it forms a real image at the same position as that of the original object. Plane mirrors form virtual images for real objects and real images for virtual objects.
Formula used:
$\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}$
Complete answer:
Let’s draw a simple sketch from the information given in the question for a better understanding.
![seo images](https://www.vedantu.com/question-sets/532207c7-6941-4331-b922-1f1748aacc9f1748835557524347283.png)
From the diagram, you should be able to understand that the incident rays from $O$ are reflected onto the plane mirror. This forms an image in the plane mirror, which we’ll be calling ${I_1}$. Now this image ${I_1}$ will act as the object for the plane mirror. So, its reflection forms an image ${I_2}$ again at $O$, as per the question. Let’s assume ‘$x$’ to be the distance between the mirrors and the object is placed at the center of them, say $\dfrac{x}{2}$.
Now, based on the diagram we can easily solve the question.
We have the mirror formula as,
$\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}$
Where,
$f$ is the focal distance
$u$ is the object distance
$v$ is the image distance
They’ve given the radius of curvature of the concave mirror as $60cm$, so the focal length is $f = - 30cm$. The negative sign indicates that distances are measured from the pole, opposite to the direction of incident rays. Similarly, the object is placed at the center of two mirrors, so we have $u = - \dfrac{x}{2}$.
Substituting these values in the mirror equation, we have
$\eqalign{
& \dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v} \cr
& \Rightarrow \dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u} \cr
& \Rightarrow \dfrac{1}{v} = \dfrac{1}{{ - 30}} - \dfrac{1}{{ - \dfrac{x}{2}}} \cr
& \Rightarrow \dfrac{1}{v} = \dfrac{1}{{ - 30}} + \dfrac{2}{x} \cr
& \Rightarrow v = \dfrac{{ - 30x}}{{x - 60}} \cr} $
The image ${I_1}$ is formed at this distance from the concave mirror. This image ${I_1}$ acts as an object for the plane mirror. Now, they’ve given in the question, that the plane mirror forms the image ${I_2}$ at $O$. From this, we need to understand that the object ${I_1}$ is at $\dfrac{x}{2}$ distance from the plane mirror as it forms its image ${I_2}$ at $\dfrac{x}{2}$ distance. So, the actual distance of ${I_1}$ from the concave mirror will be
Now the distance of ${I_1}$ from the concave mirror will be $x + \dfrac{x}{2}$.
Equating this to the result we’ve obtained,
$\eqalign{
& x + \dfrac{x}{2} = \left| v \right| \cr
& \Rightarrow x + \dfrac{x}{2} = \dfrac{{30x}}{{x - 60}} \cr
& \Rightarrow \dfrac{{3x}}{2} = \dfrac{{30x}}{{x - 60}} \cr
& \Rightarrow \dfrac{1}{2} = \dfrac{{10}}{{x - 60}} \cr
& \Rightarrow x - 60 = 20 \cr
& \Rightarrow x = 80 \cr
& \therefore x = 80cm \cr} $
So, the correct answer is “Option B ”.
Note:
One must understand that the image formed by the concave mirror, is inside the plane mirror. This image acts as a virtual object for the plane mirror. Hence, it forms a real image at the same position as that of the original object. Plane mirrors form virtual images for real objects and real images for virtual objects.
Recently Updated Pages
The radius of curvature of a plane mirror is a positive class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Choose the word which is closest to the opposite in class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Select the antonym for the following word from the class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Select the synonym for the given word Transparency class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Select the given word which means the opposite of the class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The purest form of carbon is a Graphite b Diamond c class 10 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which are the Top 10 Largest Countries of the World?
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the meaning of sol in chemistry class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The capital of British India was transferred from Calcutta class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Capital of the Cheras was A Madurai B Muziri C Uraiyur class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)