A plot of log(a-x) against time ’t’ is a straight line. This indicates that the reaction is of:
(A) Zero order
(B) First order
(C) Second order
(D) Third order
Answer
Verified
415.1k+ views
Hint: Reaction in which the reaction rate is linearly dependent on the concentration of only one reactant is called a first order reaction.
Complete step by step answer:
We know that for a first order reaction,
\[{\text{ - }}\dfrac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k}}{\text{.C}}\]
On integrating we get, \[\int\limits_{{{\text{C}}_{\text{0}}}}^{\text{C}} {\dfrac{{{\text{dC}}}}{{\text{C}}}} {\text{ = - k }}\int\limits_{\text{0}}^{\text{t}} {{\text{dt}}} \]
Where, \[{{\text{C}}_0}\] is the concentration of the reactant at time t = 0 and C is the concentration of the reactant at time t = t.
So, we get, \[{\text{log C - log}}{{\text{C}}_0}{\text{ = - k}}{\text{. t}}\]
\[{\text{log C = - k}}{\text{.t + log }}{{\text{C}}_0}\]
But, \[{\text{log }}{{\text{C}}_0}\] is the initial concentration of the reactant which will be constant. So, if \[{{\text{C}}_0}\] i.e. initial concentration of the reactant is considered to be ‘a’ then C which is concentration at time t will be (a-x).
So, we write it as \[{\text{log (a - x) = - k}}{\text{.t + log a}}\]. This equation is of the form \[{\text{y = mx + c}}\].
Thus, graph of log(a-x) against time ’t’ will look like –
Hence, option B is correct.
Additional information:
The power dependence of rate on the concentration of all reactants is called as order of the reaction. When the rate of reaction depends on concentration of only one reactant, it is called as a first order reaction.
The rate of reaction is independent of the concentration of the reactants, the reaction is said to be zero order reaction.
When the rate of a reaction depends either on the concentration of one reactant squared or from the concentration of two separate reactants, the reaction is called a second order reaction.
Note: A plot of log(a-x) against time ’t’ is a straight line is a very peculiar feature of first order reactions only. Hence, the answer is first order reaction.
Complete step by step answer:
We know that for a first order reaction,
\[{\text{ - }}\dfrac{{{\text{dC}}}}{{{\text{dt}}}}{\text{ = k}}{\text{.C}}\]
On integrating we get, \[\int\limits_{{{\text{C}}_{\text{0}}}}^{\text{C}} {\dfrac{{{\text{dC}}}}{{\text{C}}}} {\text{ = - k }}\int\limits_{\text{0}}^{\text{t}} {{\text{dt}}} \]
Where, \[{{\text{C}}_0}\] is the concentration of the reactant at time t = 0 and C is the concentration of the reactant at time t = t.
So, we get, \[{\text{log C - log}}{{\text{C}}_0}{\text{ = - k}}{\text{. t}}\]
\[{\text{log C = - k}}{\text{.t + log }}{{\text{C}}_0}\]
But, \[{\text{log }}{{\text{C}}_0}\] is the initial concentration of the reactant which will be constant. So, if \[{{\text{C}}_0}\] i.e. initial concentration of the reactant is considered to be ‘a’ then C which is concentration at time t will be (a-x).
So, we write it as \[{\text{log (a - x) = - k}}{\text{.t + log a}}\]. This equation is of the form \[{\text{y = mx + c}}\].
Thus, graph of log(a-x) against time ’t’ will look like –
Hence, option B is correct.
Additional information:
The power dependence of rate on the concentration of all reactants is called as order of the reaction. When the rate of reaction depends on concentration of only one reactant, it is called as a first order reaction.
The rate of reaction is independent of the concentration of the reactants, the reaction is said to be zero order reaction.
When the rate of a reaction depends either on the concentration of one reactant squared or from the concentration of two separate reactants, the reaction is called a second order reaction.
Note: A plot of log(a-x) against time ’t’ is a straight line is a very peculiar feature of first order reactions only. Hence, the answer is first order reaction.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Online Mock Test for Class 12
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Biomolecules Class 12 Notes: CBSE Chemistry Chapter 10
NCERT Solutions for Class 12 Chemistry In Hindi Chapter 3 Electrochemistry Hindi Medium
JEE Main Course 2025: Get All the Relevant Details
Coordination Compounds Class 12 Notes: CBSE Chemistry Chapter 5
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry