Answer
Verified
410.7k+ views
Hint: A prism is an optically transparent material which is used to refract the light which falls on the surface of the prism,it has well-polished surfaces. Refractive index is defined as the ratio of speed of light in vacuum to the speed of light in the second medium.
Formula used:
The formula of the refractive index is given by,
$\mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Where D is the angle of deviation, A is the angle of prism and $\mu $ is the coefficient of
refractive index.
Complete answer:
It is given in this problem that there is a prism having refractive index $\mu $ and the angle of incidence is placed such that there is minimum deviation of position and we need to find the value of A in terms of $\mu $ which is a refractive index.
Since, the formula of the refractive index given by,
$\mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Where D is the angle of deviation, A is the angle of prism and $\mu $ is the coefficient of refractive index.
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
It is mentioned in the problem that the prism is placed in the minimum deviation position therefore,
$ \Rightarrow A = D$
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Replacing angle D with A in the formula of the refractive index we get,
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{A + A}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{2A}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Since, $\sin A = 2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right)$.
$ \Rightarrow \mu = \dfrac{{\sin \left( A \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Replacing $\sin A$ in the above relation we get,
$ \Rightarrow \mu = \dfrac{{2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
$ \Rightarrow \mu = 2\cos \left( {\dfrac{A}{2}} \right)$
The refractive index is given by$\mu = 2\cos \left( {\dfrac{A}{2}} \right)$.
The correct answer for this problem is option C.
Note:
It is given in the problem that the angle of prism equal to the angle of deviation. The refractive index of the material decides to which extent the light which is entering the prism will deviate from the normal, the more the denser material the light will bend far away from the normal.
Formula used:
The formula of the refractive index is given by,
$\mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Where D is the angle of deviation, A is the angle of prism and $\mu $ is the coefficient of
refractive index.
Complete answer:
It is given in this problem that there is a prism having refractive index $\mu $ and the angle of incidence is placed such that there is minimum deviation of position and we need to find the value of A in terms of $\mu $ which is a refractive index.
Since, the formula of the refractive index given by,
$\mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Where D is the angle of deviation, A is the angle of prism and $\mu $ is the coefficient of refractive index.
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
It is mentioned in the problem that the prism is placed in the minimum deviation position therefore,
$ \Rightarrow A = D$
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{A + D}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Replacing angle D with A in the formula of the refractive index we get,
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{A + A}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
$ \Rightarrow \mu = \dfrac{{\sin \left( {\dfrac{{2A}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Since, $\sin A = 2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right)$.
$ \Rightarrow \mu = \dfrac{{\sin \left( A \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
Replacing $\sin A$ in the above relation we get,
$ \Rightarrow \mu = \dfrac{{2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$
$ \Rightarrow \mu = 2\cos \left( {\dfrac{A}{2}} \right)$
The refractive index is given by$\mu = 2\cos \left( {\dfrac{A}{2}} \right)$.
The correct answer for this problem is option C.
Note:
It is given in the problem that the angle of prism equal to the angle of deviation. The refractive index of the material decides to which extent the light which is entering the prism will deviate from the normal, the more the denser material the light will bend far away from the normal.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE