Answer
Verified
396k+ views
Hint: The wave which travels continuously in a medium in the same direction without any change in its amplitude is known as a travelling wave or a progressive wave. Amplitude can be defined as the magnitude of maximum displacement of a particle in a wave from the equilibrium position.
Complete step by step answer:
A progressive wave can be transverse or longitudinal. During the propagation of a wave through a medium, if the particles of the medium vibrate simply harmonically about their mean positions, then the wave is called a plane progressive wave.
Generally, the displacement of a sinusoidal wave propagating in the positive direction of x-axis is given by: $y(x,t) = a\sin (kx - \omega t + \phi )$
Where $a = $amplitude of the wave, $k = $angular wave number and $\omega = $angular frequency.
$(kx - \omega t + \phi ) = $phase
$\phi = $phase angle
The equation given in the question is ${\text{y = A sin(2}}\omega {\text{t - kx/2)}}$.
At time $t = 0$:
$\pm {\text{A = A sin( - kx/2)}}$
$\Rightarrow {\text{sin( - kx/2) = }} \pm {\text{1}}$
$\Rightarrow \dfrac{{kx}}{2} = \dfrac{\pi }{2}$
$\therefore x = \dfrac{\pi }{k}$
Therefore, option A is the correct answer.
Note: The phase describes the state of motion of the wave. The points on a wave that travel in the same direction and rise and fall together are said to be in phase with each other. The points on a wave which travel in opposite directions to each other such that one is falling and another one is rising, are said to be in anti-phase with each other.
Complete step by step answer:
A progressive wave can be transverse or longitudinal. During the propagation of a wave through a medium, if the particles of the medium vibrate simply harmonically about their mean positions, then the wave is called a plane progressive wave.
Generally, the displacement of a sinusoidal wave propagating in the positive direction of x-axis is given by: $y(x,t) = a\sin (kx - \omega t + \phi )$
Where $a = $amplitude of the wave, $k = $angular wave number and $\omega = $angular frequency.
$(kx - \omega t + \phi ) = $phase
$\phi = $phase angle
The equation given in the question is ${\text{y = A sin(2}}\omega {\text{t - kx/2)}}$.
At time $t = 0$:
$\pm {\text{A = A sin( - kx/2)}}$
$\Rightarrow {\text{sin( - kx/2) = }} \pm {\text{1}}$
$\Rightarrow \dfrac{{kx}}{2} = \dfrac{\pi }{2}$
$\therefore x = \dfrac{\pi }{k}$
Therefore, option A is the correct answer.
Note: The phase describes the state of motion of the wave. The points on a wave that travel in the same direction and rise and fall together are said to be in phase with each other. The points on a wave which travel in opposite directions to each other such that one is falling and another one is rising, are said to be in anti-phase with each other.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE