Answer
Verified
453.3k+ views
Hint:Concept of Total internal reflection is to be used. Then by shell’s law, the maximum value of $\alpha $ can be found.
Formula used:
1. Snell’s law
\[{\mu _1}\,\,\sin \,\,i\,\, = {\mu _2}\,\,\sin \,\,r\]
2. $\sin \,\,{i_C} = \dfrac{{{\mu _2}}}{{{\mu _1}}}$
Where i is the angle of incidence
R is the angle of refraction
${i_C}$ is the critical angle
The ray travel from medium having refractive index ${\mu _1}$ to medium having refractive index ${\mu _2}.$
Complete step by step answer:
For the ray to emerge from the face CD, it has to undergo total interval reflection at face AD firstly as shown in the figure.
For total interval reflection to take place, angle of incidence, ${r_1} > $ critical angle ${i_C}.$
i.e. ${r_1} > {i_C}$
Now, $\sin \,\,{r_1} = \dfrac{{{n_2}}}{{{n_1}}} \Rightarrow {r_1} = {\sin ^{ - 1}}\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right).......\left( 1 \right)$
Now, let corresponding ${\alpha _{\max }},$ r is the angle of redfraction
We know that,
$r + r = 90$
$ \Rightarrow r = 90 - r,$
So, $sin\,\,r = \sin \left( {90 - {r_1}} \right)$
$\sin \,\,r = \cos {r_1}\,\,\,\left( {as\,\,\cos \left( {90 - \theta } \right) = \sin \theta } \right).......\left( 2 \right)$
Now, we know that by Snell’s law the ratio of $\sin r$ (angle of incidence) to $\sin \,\,i$ (angle of refraction) is constant and gives the refractive index in case of refraction.
So, for the face AB, by applying Snell’s law, we have
${n_2}\,\,\sin \,\,{\alpha _{\max }} = {n_1}\,\,\sin \,\,r$
(as here angle of incidence $ = {\alpha _{\max }}$ and angle of refraction $ = r$) and the ray is travelling from ${n_2}$ to ${n_1}.$
Putting equation (2) in it, we get ${n_2}\,\,\sin \,\,{\alpha _{\max }} = {n_1}\,\,\cos \,\,{r_1}$
Putting ${r_1}$ from equation (1) in it,
We have
${n_2}\,\,\sin \,\,{\alpha _{\max }} = {n_1}\,\,\cos \,\left[ {{{\sin }^{ - 1}}\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right)} \right]$
$ \Rightarrow \sin \,\,{\alpha _{\max }} = \dfrac{{{n_1}}}{{{n_2}}}\,\,\cos \,\left[ {{{\sin }^{ - 1}}\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right)} \right]$
$ \Rightarrow {\alpha _{\max }} = {\sin ^{ - 1}}\,\left[ {\dfrac{{{n_1}}}{{{n_2}}}\cos \left( {{{\sin }^{ - 1}}} \right)\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right)} \right]$
Hence, option (A) is the correct option.
Note: \[r + {r_1} = {90^0}\]
This is because $\Delta PQR,$ is a right angled triangle so,
\[r + {r_1} + {90^0} = {190^0}\] (by angle sum property)
\[r + {r_1} = {190^0} - {90^0}\]
\[ \Rightarrow r + {r_1} = {90^0}\].
Formula used:
1. Snell’s law
\[{\mu _1}\,\,\sin \,\,i\,\, = {\mu _2}\,\,\sin \,\,r\]
2. $\sin \,\,{i_C} = \dfrac{{{\mu _2}}}{{{\mu _1}}}$
Where i is the angle of incidence
R is the angle of refraction
${i_C}$ is the critical angle
The ray travel from medium having refractive index ${\mu _1}$ to medium having refractive index ${\mu _2}.$
Complete step by step answer:
For the ray to emerge from the face CD, it has to undergo total interval reflection at face AD firstly as shown in the figure.
For total interval reflection to take place, angle of incidence, ${r_1} > $ critical angle ${i_C}.$
i.e. ${r_1} > {i_C}$
Now, $\sin \,\,{r_1} = \dfrac{{{n_2}}}{{{n_1}}} \Rightarrow {r_1} = {\sin ^{ - 1}}\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right).......\left( 1 \right)$
Now, let corresponding ${\alpha _{\max }},$ r is the angle of redfraction
We know that,
$r + r = 90$
$ \Rightarrow r = 90 - r,$
So, $sin\,\,r = \sin \left( {90 - {r_1}} \right)$
$\sin \,\,r = \cos {r_1}\,\,\,\left( {as\,\,\cos \left( {90 - \theta } \right) = \sin \theta } \right).......\left( 2 \right)$
Now, we know that by Snell’s law the ratio of $\sin r$ (angle of incidence) to $\sin \,\,i$ (angle of refraction) is constant and gives the refractive index in case of refraction.
So, for the face AB, by applying Snell’s law, we have
${n_2}\,\,\sin \,\,{\alpha _{\max }} = {n_1}\,\,\sin \,\,r$
(as here angle of incidence $ = {\alpha _{\max }}$ and angle of refraction $ = r$) and the ray is travelling from ${n_2}$ to ${n_1}.$
Putting equation (2) in it, we get ${n_2}\,\,\sin \,\,{\alpha _{\max }} = {n_1}\,\,\cos \,\,{r_1}$
Putting ${r_1}$ from equation (1) in it,
We have
${n_2}\,\,\sin \,\,{\alpha _{\max }} = {n_1}\,\,\cos \,\left[ {{{\sin }^{ - 1}}\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right)} \right]$
$ \Rightarrow \sin \,\,{\alpha _{\max }} = \dfrac{{{n_1}}}{{{n_2}}}\,\,\cos \,\left[ {{{\sin }^{ - 1}}\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right)} \right]$
$ \Rightarrow {\alpha _{\max }} = {\sin ^{ - 1}}\,\left[ {\dfrac{{{n_1}}}{{{n_2}}}\cos \left( {{{\sin }^{ - 1}}} \right)\left( {\dfrac{{{n_2}}}{{{n_1}}}} \right)} \right]$
Hence, option (A) is the correct option.
Note: \[r + {r_1} = {90^0}\]
This is because $\Delta PQR,$ is a right angled triangle so,
\[r + {r_1} + {90^0} = {190^0}\] (by angle sum property)
\[r + {r_1} = {190^0} - {90^0}\]
\[ \Rightarrow r + {r_1} = {90^0}\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE