Answer
Verified
468.9k+ views
Hint:In this question, we know volume of the cylinder, cone and the hemisphere formulas that is $\pi {r^2}h,\dfrac{1}{3}\pi {r^2}h,\dfrac{2}{3}\pi {r^3}$ respectively. Then we take their ratio and use the given information of the same height and the same base area and calculate the ratio of their volumes.
Complete step-by-step answer:
We are given the cylinder, cone and the hemisphere having the same base area and height. So consider one cylinder, cone and the hemisphere. The base area of the cylinder with radius $r$ is $\pi {r^2}$.
So the base area of the cone and the hemisphere is also $\pi {r^2}$. Now let the height of the cylinder be $h$
Then the height of the cone is also \[h\].
Now we know that the height of the hemisphere is also the radius of the hemisphere.
So we can say that \[h = r\]$ - - - - - \left( 1 \right)$
Now taking volume of the cylinder: volume of the cone: volume of the hemisphere
We know that the volume of the cylinder, cone and the hemisphere that is $\pi {r^2}h,\dfrac{1}{3}\pi {r^2}h,\dfrac{2}{3}\pi {r^3}$ respectively.
So $\pi {r^2}h:\dfrac{1}{3}\pi {r^2}h:\dfrac{2}{3}\pi {r^3}$
Now using (1) we get,
$1:\dfrac{1}{3}:\dfrac{2}{3}$
Multiplying 3 in above ratios we get,
$3:1:2$
So the ratio is $3:1:2$
So, the correct answer is “Option C”.
Note:The tricky part of this question is to know that height of the hemisphere is also the radius of the hemisphere. And from this point, we get all the shapes.Students should remember formulas of volume of cone , cylinder and hemisphere to solve these types of questions.
Complete step-by-step answer:
We are given the cylinder, cone and the hemisphere having the same base area and height. So consider one cylinder, cone and the hemisphere. The base area of the cylinder with radius $r$ is $\pi {r^2}$.
So the base area of the cone and the hemisphere is also $\pi {r^2}$. Now let the height of the cylinder be $h$
Then the height of the cone is also \[h\].
Now we know that the height of the hemisphere is also the radius of the hemisphere.
So we can say that \[h = r\]$ - - - - - \left( 1 \right)$
Now taking volume of the cylinder: volume of the cone: volume of the hemisphere
We know that the volume of the cylinder, cone and the hemisphere that is $\pi {r^2}h,\dfrac{1}{3}\pi {r^2}h,\dfrac{2}{3}\pi {r^3}$ respectively.
So $\pi {r^2}h:\dfrac{1}{3}\pi {r^2}h:\dfrac{2}{3}\pi {r^3}$
Now using (1) we get,
$1:\dfrac{1}{3}:\dfrac{2}{3}$
Multiplying 3 in above ratios we get,
$3:1:2$
So the ratio is $3:1:2$
So, the correct answer is “Option C”.
Note:The tricky part of this question is to know that height of the hemisphere is also the radius of the hemisphere. And from this point, we get all the shapes.Students should remember formulas of volume of cone , cylinder and hemisphere to solve these types of questions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers