
A simple harmonic progressive wave is represented by the equation: \[y = 8\sin 2\pi \left( {0.1x - 2t} \right)\] where \[x\] and \[y\] are in cm and \[t\] is in seconds. At any instant the phase difference between two particles separated by \[{\text{2}}{\text{.0}}\,{\text{cm}}\]in the \[x\] direction is
A. \[{18^ \circ }\]
B. \[{36^ \circ }\]
C. \[{54^ \circ }\]
D. \[{72^ \circ }\]
Answer
569.7k+ views
Hint: Compare the given equation with the generalized equation of simple harmonic wave and then find out the value of propagation constant of the given simple harmonic wave. Use the value of propagation constant to find out the phase difference between the particles.
Complete step by step answer:
Given, the wave equation of a simple harmonic progressive wave is
\[y = 8\sin 2\pi \left( {0.1x - 2t} \right)\]
\[ \Rightarrow y = 8\sin \left( {0.2\pi x - 4\pi t} \right)\] …………………..(1)
And the distance between the two particles is \[\Delta x = 2.0\,{\text{cm}}\] …………………...(2)
The generalized equation for a simple harmonic wave travelling along x-axis is written as,
\[y = A\sin \left( {kx - wt} \right)\] …………………………….(3)
where \[A\]is the amplitude of the wave, \[k\]is propagation constant, \[w\] is the angular frequency, \[t\]is the time and \[x\] is the displacement of the particle.
Comparing equation (1) and (2), we get the propagation constant to be
\[k = 0.2\pi \] ………………………………...(4)
The formula for propagation constant is,
\[k = \dfrac{{2\pi }}{\lambda }\] ………………………………...(5)
Where \[\lambda \] is the wavelength of the wave.
Equating equations (3) and (4), we get
\[0.2\pi = \dfrac{{2\pi }}{\lambda }\]
\[ \Rightarrow \lambda = \dfrac{{2\pi }}{{0.2\pi }} = 10\,{\text{cm}}\] ……………………………….(6)
The formula to find out the phase difference between two particles is,
\[\Delta \phi {\text{ = }}\dfrac{{2\pi }}{\lambda }\Delta x\] …………………………………..(7)
where \[\Delta x\] is the distance between two particles and \[\lambda \] is the wavelength of the wave.
Now, putting the values of \[\lambda \] and \[\Delta x\] from equation (6) and (2) respectively, in equation (7), we get
\[ \Rightarrow \Delta \phi = \dfrac{{2\pi }}{{10}} \times 2 \\
\Rightarrow \Delta \phi = \dfrac{{2\pi }}{5} = {72^ \circ } \\\]
Therefore, the phase difference between two particles separated by a distance \[\Delta x = 2.0\,{\text{cm}}\] along x-axis direction is \[{72^ \circ }\]
So, the correct answer is “Option D”.
Note:
While comparing the generalized equation with the given equation, we should carefully check for the values of propagation constant and angular frequency. For example in this question \[2\pi \] was given outside of the bracket and if we don’t consider this factor and take \[k\] as \[0.1\] then it would lead us to the wrong answer.
Complete step by step answer:
Given, the wave equation of a simple harmonic progressive wave is
\[y = 8\sin 2\pi \left( {0.1x - 2t} \right)\]
\[ \Rightarrow y = 8\sin \left( {0.2\pi x - 4\pi t} \right)\] …………………..(1)
And the distance between the two particles is \[\Delta x = 2.0\,{\text{cm}}\] …………………...(2)
The generalized equation for a simple harmonic wave travelling along x-axis is written as,
\[y = A\sin \left( {kx - wt} \right)\] …………………………….(3)
where \[A\]is the amplitude of the wave, \[k\]is propagation constant, \[w\] is the angular frequency, \[t\]is the time and \[x\] is the displacement of the particle.
Comparing equation (1) and (2), we get the propagation constant to be
\[k = 0.2\pi \] ………………………………...(4)
The formula for propagation constant is,
\[k = \dfrac{{2\pi }}{\lambda }\] ………………………………...(5)
Where \[\lambda \] is the wavelength of the wave.
Equating equations (3) and (4), we get
\[0.2\pi = \dfrac{{2\pi }}{\lambda }\]
\[ \Rightarrow \lambda = \dfrac{{2\pi }}{{0.2\pi }} = 10\,{\text{cm}}\] ……………………………….(6)
The formula to find out the phase difference between two particles is,
\[\Delta \phi {\text{ = }}\dfrac{{2\pi }}{\lambda }\Delta x\] …………………………………..(7)
where \[\Delta x\] is the distance between two particles and \[\lambda \] is the wavelength of the wave.
Now, putting the values of \[\lambda \] and \[\Delta x\] from equation (6) and (2) respectively, in equation (7), we get
\[ \Rightarrow \Delta \phi = \dfrac{{2\pi }}{{10}} \times 2 \\
\Rightarrow \Delta \phi = \dfrac{{2\pi }}{5} = {72^ \circ } \\\]
Therefore, the phase difference between two particles separated by a distance \[\Delta x = 2.0\,{\text{cm}}\] along x-axis direction is \[{72^ \circ }\]
So, the correct answer is “Option D”.
Note:
While comparing the generalized equation with the given equation, we should carefully check for the values of propagation constant and angular frequency. For example in this question \[2\pi \] was given outside of the bracket and if we don’t consider this factor and take \[k\] as \[0.1\] then it would lead us to the wrong answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

