Answer
Verified
451.5k+ views
Hint: This question needs to be approached in a different way. We have been given the statements and asked to check which is correct with our given conditions. So as we see in options we need to find the velocity of the particle and velocity of the wave. We will then equate the two velocities and if any one of the three statements is checked to be true that will be considered as our answer. If none of the three statements is true it will be clear that option D is our answer.
Formula Used: v = A \[\omega \]
Where, A = amplitude and \[\omega \] = angular frequency of the particle
V = f\[\lambda \]
Where, f= frequency of the wave and \[\lambda \] = wavelength
Complete step-by-step solution:
In the diagram above, the amplitude A is half of the total vibration path of the vibrating body. It is a measure of the change in a single period of time. In a sine or cosine wave amplitude is the perpendicular distance between the maximum height and the sinusoidal axis. Similarly, the wavelength is the distance between two crests or troughs of a wave.
We know that velocity of wave is given by the equation
V = f\[\lambda \]
We also know that frequency of a wave,
f = \[\dfrac{\omega }{2\pi }\]
Substitute the value of frequency in equation (1)
We get,
V = (\[\dfrac{\omega }{2\pi }\])(\[\lambda \]) ……………………… (A)
Similarly velocity of particle is given by,
v = A \[\omega \] ………………….. (B)
Now, let us assume V = v
Therefore,
From (A) and (B)
We can write,
(\[\dfrac{\omega }{2\pi }\])(\[\lambda \]) = A \[\omega \]
On dividing both sides by \[\omega \]
We get,
A = \[\dfrac{\lambda }{2\pi }\]
Therefore, the reverse statement that if A = \[\dfrac{\lambda }{2\pi }\] then V = v is true then by symmetric rule the statement V = v if A = \[\dfrac{\lambda }{2\pi }\] is also true.
Therefore, the correct answer is option A.
Note: There is no other way to solve this question. We must make the assumption that V = v and check if the statement holds true. In a sinusoidal wave moving at constant speed the frequency is inversely proportional to the wavelength \[\lambda \].
Formula Used: v = A \[\omega \]
Where, A = amplitude and \[\omega \] = angular frequency of the particle
V = f\[\lambda \]
Where, f= frequency of the wave and \[\lambda \] = wavelength
Complete step-by-step solution:
In the diagram above, the amplitude A is half of the total vibration path of the vibrating body. It is a measure of the change in a single period of time. In a sine or cosine wave amplitude is the perpendicular distance between the maximum height and the sinusoidal axis. Similarly, the wavelength is the distance between two crests or troughs of a wave.
We know that velocity of wave is given by the equation
V = f\[\lambda \]
We also know that frequency of a wave,
f = \[\dfrac{\omega }{2\pi }\]
Substitute the value of frequency in equation (1)
We get,
V = (\[\dfrac{\omega }{2\pi }\])(\[\lambda \]) ……………………… (A)
Similarly velocity of particle is given by,
v = A \[\omega \] ………………….. (B)
Now, let us assume V = v
Therefore,
From (A) and (B)
We can write,
(\[\dfrac{\omega }{2\pi }\])(\[\lambda \]) = A \[\omega \]
On dividing both sides by \[\omega \]
We get,
A = \[\dfrac{\lambda }{2\pi }\]
Therefore, the reverse statement that if A = \[\dfrac{\lambda }{2\pi }\] then V = v is true then by symmetric rule the statement V = v if A = \[\dfrac{\lambda }{2\pi }\] is also true.
Therefore, the correct answer is option A.
Note: There is no other way to solve this question. We must make the assumption that V = v and check if the statement holds true. In a sinusoidal wave moving at constant speed the frequency is inversely proportional to the wavelength \[\lambda \].
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE