A sinusoidal wave traveling in the positive direction of x on a stretched membrane string has amplitude 2.0 cm, Wavelength 1m, and wave velocity 5.0m/s. At x=0 and t=0. It is given that displacement y=0 and $\dfrac{{\partial y}}{{\partial x}} < 0$. Express the wave function correctly in the form ${\rm{y}}\;{\rm{ = f(x,t)}}$:-
A. ${\rm{y}}\;{\rm{ = (0}}{\rm{.04m) }}\left[ {\sin (\pi {{\rm{m}}^{ - 1}})x - (10\pi {{\rm{s}}^{ - 1}}){\rm{t}}} \right]$
B. ${\rm{y}}\;{\rm{ = (0}}{\rm{.02m) cos 2}}\pi (x - 5t)$
C. ${\rm{y}}\;{\rm{ = (0}}{\rm{.02m) }}\left[ {\sin (2\pi {{\rm{m}}^{ - 1}})x - (10\pi {{\rm{s}}^{ - 1}}){\rm{t}}} \right]$
D. ${\rm{y}}\;{\rm{ = (0}}{\rm{.02m) cos}}\pi (x - 5t + \dfrac{1}{4})$
Answer
Verified
466.5k+ views
Hint: A wave traveling in the positive direction along x from one point to another point of a medium is known as a progressive wave or a traveling wave. When a progressive wave travels in a medium, then the medium's particles vibrate in the same way. Still, the vibration phase changes from one particle to particle at any instant.
If $\phi $ be the initial phase angle, then the progressive wave traveling along the positive x-axis direction is represented as:
${\rm{y}}\; = \;{\rm{a sin(kx - }}\omega {\rm{t + }}\phi {\rm{)}}$
Complete step by step answer:
Now according to the question:
The amplitude of the wave is given as ${\rm{A}}\;{\rm{ = }}\;{\rm{2}}{\rm{.0cm = 0}}{\rm{.02m}}$
Wavelength is given as $\lambda \; = \,1{\rm{m}}$
Now the wave number $k\; = \;\dfrac{{2\pi }}{\lambda }\, = \;2\pi {{\rm{m}}^{ - 1}}$
And the angular frequency $\omega \; = \;vk\; = \;5m/s \times 2\pi {\rm{m}}{{\rm{s}}^{ - 1}}\; = 10\pi {\rm{rad}}{{\rm{s}}^{ - 1}}$
Therefore, we put the values in the above equation with coordinates x and t:
$ \Rightarrow {\rm{y(x,t) = (0}}{\rm{.02) sin}}\left[ {2\pi (x - 5.0t) + \phi } \right]$
We have given that for x=0 and t=0,
${\rm{y}}\; = \;0\;{\rm{and}}\;\dfrac{{\delta y}}{{\delta x}} < 0$
$ \Rightarrow \; - 0.02{\rm{sin}}\phi \; = 0\,({\rm{as y = 0)}}$
$\therefore \; - 0.2\pi \cos \phi < 0$
From these conditions, we include that,
$\phi \; = \;2{\rm{n}}\pi {\text{ where n = 0,2,4,6}}......$
Therefore, ${\rm{y}}\;{\rm{ = (0}}{\rm{.02m) }}\left[ {\sin (2\pi {{\rm{m}}^{ - 1}})x - (10\pi {{\rm{s}}^{ - 1}}){\rm{t}}} \right]$
Hence, the correct option is (C).
Note:
In SI, the unit of propagation constant or angular wave number (k) radian /meter. The Dimensional formula for the angular wave number is $\left[ {{{\rm{M}}^0}{{\rm{L}}^{ - 1}}{{\rm{T}}^0}} \right]$ . Also, progressive wave traveling along the positive x-axis with a speed $v$ can be represented as ${\rm{y = a sin}}\dfrac{{2\pi }}{\lambda }\;(vt - x)$
If $\phi $ be the initial phase angle, then the progressive wave traveling along the positive x-axis direction is represented as:
${\rm{y}}\; = \;{\rm{a sin(kx - }}\omega {\rm{t + }}\phi {\rm{)}}$
Complete step by step answer:
Now according to the question:
The amplitude of the wave is given as ${\rm{A}}\;{\rm{ = }}\;{\rm{2}}{\rm{.0cm = 0}}{\rm{.02m}}$
Wavelength is given as $\lambda \; = \,1{\rm{m}}$
Now the wave number $k\; = \;\dfrac{{2\pi }}{\lambda }\, = \;2\pi {{\rm{m}}^{ - 1}}$
And the angular frequency $\omega \; = \;vk\; = \;5m/s \times 2\pi {\rm{m}}{{\rm{s}}^{ - 1}}\; = 10\pi {\rm{rad}}{{\rm{s}}^{ - 1}}$
Therefore, we put the values in the above equation with coordinates x and t:
$ \Rightarrow {\rm{y(x,t) = (0}}{\rm{.02) sin}}\left[ {2\pi (x - 5.0t) + \phi } \right]$
We have given that for x=0 and t=0,
${\rm{y}}\; = \;0\;{\rm{and}}\;\dfrac{{\delta y}}{{\delta x}} < 0$
$ \Rightarrow \; - 0.02{\rm{sin}}\phi \; = 0\,({\rm{as y = 0)}}$
$\therefore \; - 0.2\pi \cos \phi < 0$
From these conditions, we include that,
$\phi \; = \;2{\rm{n}}\pi {\text{ where n = 0,2,4,6}}......$
Therefore, ${\rm{y}}\;{\rm{ = (0}}{\rm{.02m) }}\left[ {\sin (2\pi {{\rm{m}}^{ - 1}})x - (10\pi {{\rm{s}}^{ - 1}}){\rm{t}}} \right]$
Hence, the correct option is (C).
Note:
In SI, the unit of propagation constant or angular wave number (k) radian /meter. The Dimensional formula for the angular wave number is $\left[ {{{\rm{M}}^0}{{\rm{L}}^{ - 1}}{{\rm{T}}^0}} \right]$ . Also, progressive wave traveling along the positive x-axis with a speed $v$ can be represented as ${\rm{y = a sin}}\dfrac{{2\pi }}{\lambda }\;(vt - x)$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE