![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A small hole in a furnace acts like a black body. Its area is \[1\,{\text{c}}{{\text{m}}^2}\], and its temperature is the same as that of the interior of the furnace, \[1727^\circ {\text{C}}\]. The energy radiated out of the hole per second is nearly;
(Stefan’s constant=\[5.67 \times {10^{ - 8}}\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} \cdot {{\text{K}}^{{\text{ - 4}}}}\])
A.\[79\,{\text{J}}\]
B.\[60\,{\text{J}}\]
C.\[91\,{\text{J}}\]
D.\[104\,{\text{J}}\]
Answer
471.3k+ views
Hint: Use the formula for the energy radiated by a body per unit area. This formula gives the relation between the energy radiated, area of the body, Stefan’s constant, emissivity of the body and the surface temperature of the body.
Formula used:
The energy \[E\] radiated per unit area of a body is given by
\[\dfrac{E}{A} = \sigma \varepsilon {T^4}\] …… (1)
Here, \[A\] is the area of the body, \[T\] is the temperature of the body in Kelvin, \[\sigma \] is the Stefan-Boltzmann constant and \[\varepsilon \] is the emissivity of the body.
Complete step by step answer:
The temperature of the hole is the same as that of the interior furnace which is \[1727^\circ {\text{C}}\].
\[T = 1727^\circ {\text{C}}\]
The area of the hole is \[1\,{\text{c}}{{\text{m}}^2}\].
\[A = 1\,{\text{c}}{{\text{m}}^2}\]
The small hole in the furnace acts like a black body. The emissivity \[\varepsilon \] of the black body is 1.
\[\varepsilon = 1\]
Convert the unit of the temperature of the hole from degree Celsius to degree kelvin.
\[T = \left( {1727^\circ {\text{C}}} \right) + 273\]
\[ \Rightarrow T = 2000^\circ {\text{K}}\]
Hence, the temperature of the hole is \[2000^\circ {\text{K}}\].
Convert the unit of area of the hole to the SI system of units.
\[A = \left( {1\,{\text{c}}{{\text{m}}^2}} \right)\left( {\dfrac{{{{10}^{ - 4}}\,{{\text{m}}^2}}}{{1\,{\text{c}}{{\text{m}}^2}}}} \right)\]
\[ \Rightarrow A = {10^{ - 4}}\,{{\text{m}}^2}\]
Hence, the area of the hole is \[{10^{ - 4}}\,{{\text{m}}^2}\].
Determine the energy radiated \[E\] per second by the hole.
Rearrange equation (1) for the energy radiated by the hole.
\[E = \sigma \varepsilon A{T^4}\]
Substitute \[5.67 \times {10^{ - 8}}\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} \cdot {{\text{K}}^{{\text{ - 4}}}}\] for \[\sigma \], \[1\] for \[\varepsilon \], \[{10^{ - 4}}\,{{\text{m}}^2}\] for \[A\] and \[2000^\circ {\text{K}}\] for \[T\] in the above equation.
\[E = \left( {5.67 \times {{10}^{ - 8}}\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} \cdot {{\text{K}}^{{\text{ - 4}}}}} \right)\left( 1 \right)\left( {{{10}^{ - 4}}\,{{\text{m}}^2}} \right){\left( {2000^\circ {\text{K}}} \right)^4}\]
\[ \Rightarrow E = 90.72\,{\text{J}}\]
\[ \therefore E \approx 91\,{\text{J}}\]
Therefore, the energy radiated out of the hole per second is nearly \[91\,{\text{J}}\].
So, the correct answer is “Option C”.
Note:
Convert the unit of temperature to Kelvin as the formula for energy radiated per unit area states that temperature must be in degree Kelvin. Also don’t forget to convert the unit of area of the hole in the SI system of units.
Formula used:
The energy \[E\] radiated per unit area of a body is given by
\[\dfrac{E}{A} = \sigma \varepsilon {T^4}\] …… (1)
Here, \[A\] is the area of the body, \[T\] is the temperature of the body in Kelvin, \[\sigma \] is the Stefan-Boltzmann constant and \[\varepsilon \] is the emissivity of the body.
Complete step by step answer:
The temperature of the hole is the same as that of the interior furnace which is \[1727^\circ {\text{C}}\].
\[T = 1727^\circ {\text{C}}\]
The area of the hole is \[1\,{\text{c}}{{\text{m}}^2}\].
\[A = 1\,{\text{c}}{{\text{m}}^2}\]
The small hole in the furnace acts like a black body. The emissivity \[\varepsilon \] of the black body is 1.
\[\varepsilon = 1\]
Convert the unit of the temperature of the hole from degree Celsius to degree kelvin.
\[T = \left( {1727^\circ {\text{C}}} \right) + 273\]
\[ \Rightarrow T = 2000^\circ {\text{K}}\]
Hence, the temperature of the hole is \[2000^\circ {\text{K}}\].
Convert the unit of area of the hole to the SI system of units.
\[A = \left( {1\,{\text{c}}{{\text{m}}^2}} \right)\left( {\dfrac{{{{10}^{ - 4}}\,{{\text{m}}^2}}}{{1\,{\text{c}}{{\text{m}}^2}}}} \right)\]
\[ \Rightarrow A = {10^{ - 4}}\,{{\text{m}}^2}\]
Hence, the area of the hole is \[{10^{ - 4}}\,{{\text{m}}^2}\].
Determine the energy radiated \[E\] per second by the hole.
Rearrange equation (1) for the energy radiated by the hole.
\[E = \sigma \varepsilon A{T^4}\]
Substitute \[5.67 \times {10^{ - 8}}\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} \cdot {{\text{K}}^{{\text{ - 4}}}}\] for \[\sigma \], \[1\] for \[\varepsilon \], \[{10^{ - 4}}\,{{\text{m}}^2}\] for \[A\] and \[2000^\circ {\text{K}}\] for \[T\] in the above equation.
\[E = \left( {5.67 \times {{10}^{ - 8}}\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} \cdot {{\text{K}}^{{\text{ - 4}}}}} \right)\left( 1 \right)\left( {{{10}^{ - 4}}\,{{\text{m}}^2}} \right){\left( {2000^\circ {\text{K}}} \right)^4}\]
\[ \Rightarrow E = 90.72\,{\text{J}}\]
\[ \therefore E \approx 91\,{\text{J}}\]
Therefore, the energy radiated out of the hole per second is nearly \[91\,{\text{J}}\].
So, the correct answer is “Option C”.
Note:
Convert the unit of temperature to Kelvin as the formula for energy radiated per unit area states that temperature must be in degree Kelvin. Also don’t forget to convert the unit of area of the hole in the SI system of units.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)