A solid cube with an edge of 10cm is melted to form two equal cubes. Then ratio of the edge of the smaller cube to the edge of the bigger cube is
(a) ${{\left( \dfrac{1}{3} \right)}^{\dfrac{1}{3}}}$
(b) $\dfrac{1}{2}$
(c) ${{\left( \dfrac{1}{2} \right)}^{\dfrac{1}{3}}}$
(d) ${{\left( \dfrac{1}{4} \right)}^{\dfrac{1}{3}}}$
Answer
Verified
443.1k+ views
Hint: In this problem, we are given the dimensions of a solid cube. This cube has been melted to form two cubes having the same dimensions. We have to find the ratio of the edge of the smaller cube to the edge of the bigger cube. Edge of the smaller cube is given as 10cm. To find the edge of a smaller cube, we will let the edge of the cube be ‘a’.
Complete step-by-step solution:
Let’s solve the question now.
It is given that edge ‘l’ of the bigger cube = 10cm
So the volume of the bigger cube = ${{l}^{3}}\Leftrightarrow {{10}^{3}}=1000c{{m}^{3}}$
The cube is melted to form two smaller cubes of equal edges. So let the edge of the smaller cube be ‘a’. The volume of the two smaller cubes will be equal to the volume of the bigger cube.
$\begin{align}
& \Rightarrow 1000c{{m}^{3}}={{a}^{3}}+{{a}^{3}} \\
& \Rightarrow 1000c{{m}^{3}}=2{{a}^{3}} \\
\end{align}$
We need to find the value of ‘a’. Take 2 to the other side:
$\begin{align}
& \Rightarrow \dfrac{1000c{{m}^{3}}}{2}={{a}^{3}} \\
& \Rightarrow 500={{a}^{3}} \\
& \Rightarrow \sqrt[3]{500}=a \\
\end{align}$
To find the cube root of 500, let’s take the LCM:
$\begin{align}
& 2\left| \!{\underline {\,
500 \,}} \right. \\
& 2\left| \!{\underline {\,
250 \,}} \right. \\
& 5\left| \!{\underline {\,
125 \,}} \right. \\
& 5\left| \!{\underline {\,
25 \,}} \right. \\
& 5\left| \!{\underline {\,
5 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
LCM of 500: $2\times 2\times 5\times 5\times 5=5\sqrt[3]{4}$
We get the edge of smaller cube a = $5\sqrt[3]{4}$cm
Now, the ratio of the edge of the smaller cube to the edge of the bigger cube is:
$\Rightarrow \dfrac{5\sqrt[3]{4}}{10}=\dfrac{{{\left( 4 \right)}^{\dfrac{1}{3}}}}{2}$
As we know that $2\times 2\times 2=8$, so:
$\Rightarrow \dfrac{{{\left( 4 \right)}^{\dfrac{1}{3}}}}{2}={{\left( \dfrac{4}{8} \right)}^{\dfrac{1}{3}}}$
Now, cancel the terms we get:
$\Rightarrow {{\left( \dfrac{4}{8} \right)}^{\dfrac{1}{3}}}={{\left( \dfrac{1}{2} \right)}^{\dfrac{1}{3}}}$
So the correct answer is option (c).
Note: You should know the cube and cube roots of the numbers. Cube roots are formed by making triplets and square roots are formed by making pairs. SI units are most important to mention after the values. If they get missed, you will not be getting any marks.
Complete step-by-step solution:
Let’s solve the question now.
It is given that edge ‘l’ of the bigger cube = 10cm
So the volume of the bigger cube = ${{l}^{3}}\Leftrightarrow {{10}^{3}}=1000c{{m}^{3}}$
The cube is melted to form two smaller cubes of equal edges. So let the edge of the smaller cube be ‘a’. The volume of the two smaller cubes will be equal to the volume of the bigger cube.
$\begin{align}
& \Rightarrow 1000c{{m}^{3}}={{a}^{3}}+{{a}^{3}} \\
& \Rightarrow 1000c{{m}^{3}}=2{{a}^{3}} \\
\end{align}$
We need to find the value of ‘a’. Take 2 to the other side:
$\begin{align}
& \Rightarrow \dfrac{1000c{{m}^{3}}}{2}={{a}^{3}} \\
& \Rightarrow 500={{a}^{3}} \\
& \Rightarrow \sqrt[3]{500}=a \\
\end{align}$
To find the cube root of 500, let’s take the LCM:
$\begin{align}
& 2\left| \!{\underline {\,
500 \,}} \right. \\
& 2\left| \!{\underline {\,
250 \,}} \right. \\
& 5\left| \!{\underline {\,
125 \,}} \right. \\
& 5\left| \!{\underline {\,
25 \,}} \right. \\
& 5\left| \!{\underline {\,
5 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}$
LCM of 500: $2\times 2\times 5\times 5\times 5=5\sqrt[3]{4}$
We get the edge of smaller cube a = $5\sqrt[3]{4}$cm
Now, the ratio of the edge of the smaller cube to the edge of the bigger cube is:
$\Rightarrow \dfrac{5\sqrt[3]{4}}{10}=\dfrac{{{\left( 4 \right)}^{\dfrac{1}{3}}}}{2}$
As we know that $2\times 2\times 2=8$, so:
$\Rightarrow \dfrac{{{\left( 4 \right)}^{\dfrac{1}{3}}}}{2}={{\left( \dfrac{4}{8} \right)}^{\dfrac{1}{3}}}$
Now, cancel the terms we get:
$\Rightarrow {{\left( \dfrac{4}{8} \right)}^{\dfrac{1}{3}}}={{\left( \dfrac{1}{2} \right)}^{\dfrac{1}{3}}}$
So the correct answer is option (c).
Note: You should know the cube and cube roots of the numbers. Cube roots are formed by making triplets and square roots are formed by making pairs. SI units are most important to mention after the values. If they get missed, you will not be getting any marks.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE