Answer
Verified
459.3k+ views
Hint: Here a solid sphere is rolling along a straight surface, hence it will have kinetic energy. Now the kinetic energy of the sphere will have two components, rotational and transitional. And we have to find the percentage of transitional components in total kinetic energy. By using the formula of rotational and translational kinetic energy we can solve the given question.
Formula used:
\[\begin{align}
& K.E{{.}_{trans}}=\dfrac{1}{2}m{{v}^{2}} \\
& K.E{{.}_{rotat}}=\dfrac{1}{2}I{{\omega }^{2}} \\
& I=\dfrac{2}{5}m{{r}^{2}} \\
& \omega =\dfrac{v}{r} \\
\end{align}\]
Complete answer:
Let us first draw a simple diagram for the given question.
Here a solid sphere is rolling over a plane. Let's say the sphere has the radius r and as it is moving forward it has velocity which will be always tangential to the surface of the plane whereas due to its rotational motion it will have angular velocity ω. Similarly, it will have two components of the kinetic energy, one will be due to its translational motion and other due to its rotational motion. And the total energy of the sphere will be the sum of rotational kinetic energy and translational kinetic energy.
Hence total kinetic energy of the sphere will be given as
\[K.E{{.}_{total}}=K.E{{.}_{trans}}+K.E{{.}_{rotat}}\]
Now formula of transitional energy is given as
\[K.E{{.}_{trans}}=\dfrac{1}{2}m{{v}^{2}}\]
Where m is the mass and v is velocity.
And the formula of rotational energy is given as
\[K.E{{.}_{rotat}}=\dfrac{1}{2}I{{\omega }^{2}}\]
Where I is the moment of inertia and ω is angular velocity. Hence total kinetic energy will be given as
\[\begin{align}
& K.E{{.}_{total}}=\dfrac{1}{2}m{{v}^{2}}+\dfrac{1}{2}I{{\omega }^{2}} \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{1}{2}\left( m{{v}^{2}}+I{{\omega }^{2}} \right) \\
\end{align}\]
Now moment of inertia for the solid sphere is given as
\[I=\dfrac{2}{5}m{{r}^{2}}\]
Substituting this value of moment of inertia in above equation, we get
\[K.E{{.}_{total}}=\dfrac{1}{2}\left( m{{v}^{2}}+\dfrac{2}{5}m{{r}^{2}}{{\omega }^{2}} \right)\]
We know that angular velocity of a body is given as
\[\begin{align}
& \omega =\dfrac{v}{r} \\
& \Rightarrow v=\omega r \\
\end{align}\]
Substituting value of ωr as v in the above equation we get
\[\begin{align}
& K.E{{.}_{total}}=\dfrac{1}{2}\left( m{{v}^{2}}+\dfrac{2}{5}m{{v}^{2}} \right) \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{1}{2}m{{v}^{2}}\left( 1+\dfrac{2}{5} \right) \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{1}{2}m{{v}^{2}}\left( \dfrac{7}{5} \right) \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{7}{10}m{{v}^{2}} \\
\end{align}\]
Now the contribution of translational kinetic energy in total kinetic energy can be found dividing the translational kinetic energy by total kinetic energy.
\[ \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=\dfrac{\dfrac{1}{2}m{{v}^{2}}}{\dfrac{7}{10}m{{v}^{2}}} \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=\dfrac{1}{2}\times \dfrac{10}{7} \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=\dfrac{10}{14} \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=0.71 \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=71% \]
So, the correct answer is “Option B”.
Note:
We can see that the contribution of translational kinetic energy of the system will depend on the shape or type of object. As for different shapes, moments of inertia will be different and so the value of rotational kinetic energy will change resulting in a change of total kinetic energy. Although in any case most of the kinetic energy is due to translational motion.
Formula used:
\[\begin{align}
& K.E{{.}_{trans}}=\dfrac{1}{2}m{{v}^{2}} \\
& K.E{{.}_{rotat}}=\dfrac{1}{2}I{{\omega }^{2}} \\
& I=\dfrac{2}{5}m{{r}^{2}} \\
& \omega =\dfrac{v}{r} \\
\end{align}\]
Complete answer:
Let us first draw a simple diagram for the given question.
Here a solid sphere is rolling over a plane. Let's say the sphere has the radius r and as it is moving forward it has velocity which will be always tangential to the surface of the plane whereas due to its rotational motion it will have angular velocity ω. Similarly, it will have two components of the kinetic energy, one will be due to its translational motion and other due to its rotational motion. And the total energy of the sphere will be the sum of rotational kinetic energy and translational kinetic energy.
Hence total kinetic energy of the sphere will be given as
\[K.E{{.}_{total}}=K.E{{.}_{trans}}+K.E{{.}_{rotat}}\]
Now formula of transitional energy is given as
\[K.E{{.}_{trans}}=\dfrac{1}{2}m{{v}^{2}}\]
Where m is the mass and v is velocity.
And the formula of rotational energy is given as
\[K.E{{.}_{rotat}}=\dfrac{1}{2}I{{\omega }^{2}}\]
Where I is the moment of inertia and ω is angular velocity. Hence total kinetic energy will be given as
\[\begin{align}
& K.E{{.}_{total}}=\dfrac{1}{2}m{{v}^{2}}+\dfrac{1}{2}I{{\omega }^{2}} \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{1}{2}\left( m{{v}^{2}}+I{{\omega }^{2}} \right) \\
\end{align}\]
Now moment of inertia for the solid sphere is given as
\[I=\dfrac{2}{5}m{{r}^{2}}\]
Substituting this value of moment of inertia in above equation, we get
\[K.E{{.}_{total}}=\dfrac{1}{2}\left( m{{v}^{2}}+\dfrac{2}{5}m{{r}^{2}}{{\omega }^{2}} \right)\]
We know that angular velocity of a body is given as
\[\begin{align}
& \omega =\dfrac{v}{r} \\
& \Rightarrow v=\omega r \\
\end{align}\]
Substituting value of ωr as v in the above equation we get
\[\begin{align}
& K.E{{.}_{total}}=\dfrac{1}{2}\left( m{{v}^{2}}+\dfrac{2}{5}m{{v}^{2}} \right) \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{1}{2}m{{v}^{2}}\left( 1+\dfrac{2}{5} \right) \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{1}{2}m{{v}^{2}}\left( \dfrac{7}{5} \right) \\
& \Rightarrow K.E{{.}_{total}}=\dfrac{7}{10}m{{v}^{2}} \\
\end{align}\]
Now the contribution of translational kinetic energy in total kinetic energy can be found dividing the translational kinetic energy by total kinetic energy.
\[ \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=\dfrac{\dfrac{1}{2}m{{v}^{2}}}{\dfrac{7}{10}m{{v}^{2}}} \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=\dfrac{1}{2}\times \dfrac{10}{7} \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=\dfrac{10}{14} \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=0.71 \]
\[ \Rightarrow \dfrac{K.E{{.}_{trans}}}{K.E{{.}_{total}}}=71% \]
So, the correct answer is “Option B”.
Note:
We can see that the contribution of translational kinetic energy of the system will depend on the shape or type of object. As for different shapes, moments of inertia will be different and so the value of rotational kinetic energy will change resulting in a change of total kinetic energy. Although in any case most of the kinetic energy is due to translational motion.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE