Answer
Verified
440.1k+ views
Hint:To answer this question we should talk about electrophile and nucleophile. We have cyclohexane in benzene and concentrated sulphuric acid. The concentrated sulphuric acid gives proton. So, it can be used for the preparation of an electrophile. Benzene can work as a nucleophile. So, an electrophilic substitution reaction can take place.
Complete step-by-step answer:A solution of cyclohexene in benzene is stirred at ${{\text{0}}^{\text{o}}}{\text{C}}$ , then concentrated sulphuric acid is added. The concentrated sulphuric acid gives proton. The cyclohexene attacks the concentrated sulphuric acid and gets protonated to generate a cation which works as an electrophile.
The formation of electrophile is shown as follows:
Benzene has three pi bonds, so benzene is electron-rich, so benzene works as a nucleophile. So, benzene attacks at the cation of cyclohexene and gets attached. So, the benzene gets a positive charge. Then by the removal of a proton the double bond forms again. The product is known as cyclohexyl benzene.
The reaction is shown as follows:
So, after the addition of concentrated sulphuric acid, the reaction takes place and the reaction mixture contains the leftover acid, benzene, and product cyclohexyl benzene. After washing away the acid and removing excess benzene, the product is obtained is cyclohexyl benzene.
Therefore, option (B) cyclohexyl benzene, is correct.
Note:The above reaction is an aromatic substitution reaction. The substation takes place on an aromatic benzene ring, so this reaction is an aromatic substitution reaction. In this reaction carbocation forms so, the rate of reaction also depends upon the stability of carbocation. The order of stability of carbocation is as follows: ${3^ \circ } > \,{2^ \circ }\, > \,{1^ \circ }$.
Complete step-by-step answer:A solution of cyclohexene in benzene is stirred at ${{\text{0}}^{\text{o}}}{\text{C}}$ , then concentrated sulphuric acid is added. The concentrated sulphuric acid gives proton. The cyclohexene attacks the concentrated sulphuric acid and gets protonated to generate a cation which works as an electrophile.
The formation of electrophile is shown as follows:
Benzene has three pi bonds, so benzene is electron-rich, so benzene works as a nucleophile. So, benzene attacks at the cation of cyclohexene and gets attached. So, the benzene gets a positive charge. Then by the removal of a proton the double bond forms again. The product is known as cyclohexyl benzene.
The reaction is shown as follows:
So, after the addition of concentrated sulphuric acid, the reaction takes place and the reaction mixture contains the leftover acid, benzene, and product cyclohexyl benzene. After washing away the acid and removing excess benzene, the product is obtained is cyclohexyl benzene.
Therefore, option (B) cyclohexyl benzene, is correct.
Note:The above reaction is an aromatic substitution reaction. The substation takes place on an aromatic benzene ring, so this reaction is an aromatic substitution reaction. In this reaction carbocation forms so, the rate of reaction also depends upon the stability of carbocation. The order of stability of carbocation is as follows: ${3^ \circ } > \,{2^ \circ }\, > \,{1^ \circ }$.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE