Answer
Verified
455.7k+ views
Hint: To solve this problem we will substitute the given values in the sonometer formula.
We need to use a sonometer working formula. i.e. \[{f_n} = \dfrac{n}{{2l}}\sqrt {\dfrac{T}{m}} \], where, \[{f_n}\] is the frequency of \[nth\]mode, \[n\] is the mode number, \[l\] is the length of the wire, \[T\] is the tension in the wire, \[m\] is the linear mass density or mass per unit length of the wire.
Complete step-by-step answer:
If the tension reduced to half, and length becomes \[{l_1}\] then from the above condition,
\[\dfrac{1}{{2l}}\sqrt {\dfrac{T}{m}} = \dfrac{2}{{2{l_1}}}\sqrt {\dfrac{T}{{2m}}} \]
As n is a constant value, we neglected n in the formula.
$ \Rightarrow {l_1} = 1\sqrt 2 $
Thus, the correct answer to this question is option (b).
Note: A sonometer is a device for demonstrating the relationship between the frequency of the sound produced by a plucked string, and the tension, length and mass per unit length of the string. These relationships are usually called Mersenne's laws after Marin Mersenne (1588-1648), who investigated and codified them. It is used to measure the tension, frequency or density of vibrations. In the field of medicine, it is used to test both hearing and bone density. The vibrations produced by the string works under the principle of resonance and is often represented as sinusoidal waves. This is very useful.
We need to use a sonometer working formula. i.e. \[{f_n} = \dfrac{n}{{2l}}\sqrt {\dfrac{T}{m}} \], where, \[{f_n}\] is the frequency of \[nth\]mode, \[n\] is the mode number, \[l\] is the length of the wire, \[T\] is the tension in the wire, \[m\] is the linear mass density or mass per unit length of the wire.
Complete step-by-step answer:
If the tension reduced to half, and length becomes \[{l_1}\] then from the above condition,
\[\dfrac{1}{{2l}}\sqrt {\dfrac{T}{m}} = \dfrac{2}{{2{l_1}}}\sqrt {\dfrac{T}{{2m}}} \]
As n is a constant value, we neglected n in the formula.
$ \Rightarrow {l_1} = 1\sqrt 2 $
Thus, the correct answer to this question is option (b).
Note: A sonometer is a device for demonstrating the relationship between the frequency of the sound produced by a plucked string, and the tension, length and mass per unit length of the string. These relationships are usually called Mersenne's laws after Marin Mersenne (1588-1648), who investigated and codified them. It is used to measure the tension, frequency or density of vibrations. In the field of medicine, it is used to test both hearing and bone density. The vibrations produced by the string works under the principle of resonance and is often represented as sinusoidal waves. This is very useful.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE