Answer
Verified
435k+ views
Hint: In this question we have been asked to calculate the position of minimum intensity of a sound wave with frequency of 170 Hz. It is given that a man walking near the sound source hears a periodic rise and fall of sound intensity. We know that distance separating the position of minimum frequency is given as half the wavelength of the sound wave. Therefore, to calculate the position of minimum sound intensity we shall calculate the wavelength of the given sound wave.
Formula used:
\[v=n\lambda \]
Where,
v is the velocity of sound
n is the frequency of the wave
and \[\lambda \] is the wavelength,
Complete step-by-step answer:
It is given that the frequency of the sound wave is 170 Hz. The speed of sound is given as 340 m/s.
Now, from the formula, we know,
\[v=n\lambda \]
Solving for \[\lambda \]
We get,
\[\lambda =\dfrac{v}{n}\]
After substituting given values
We get,
\[\lambda =\dfrac{340}{170}\]
Therefore,
\[\lambda =2m\]……………. (1)
Now, we also know that, distance separating the two position of minimum intensity (D) is given by,
\[D=\dfrac{\lambda }{2}\]
Substituting from (1)
We get,
\[D=1m\]
So, the correct answer is “Option B”.
Note: The power carried by sound wave per unit area in a direction that is perpendicular to that area is known as sound intensity. Sound intensity is also known as acoustic intensity. Sound intensity is given as the product of sound pressure and the velocity of the particle or the sound wave. The SI unit of sound intensity is Watt per square metre.
Formula used:
\[v=n\lambda \]
Where,
v is the velocity of sound
n is the frequency of the wave
and \[\lambda \] is the wavelength,
Complete step-by-step answer:
It is given that the frequency of the sound wave is 170 Hz. The speed of sound is given as 340 m/s.
Now, from the formula, we know,
\[v=n\lambda \]
Solving for \[\lambda \]
We get,
\[\lambda =\dfrac{v}{n}\]
After substituting given values
We get,
\[\lambda =\dfrac{340}{170}\]
Therefore,
\[\lambda =2m\]……………. (1)
Now, we also know that, distance separating the two position of minimum intensity (D) is given by,
\[D=\dfrac{\lambda }{2}\]
Substituting from (1)
We get,
\[D=1m\]
So, the correct answer is “Option B”.
Note: The power carried by sound wave per unit area in a direction that is perpendicular to that area is known as sound intensity. Sound intensity is also known as acoustic intensity. Sound intensity is given as the product of sound pressure and the velocity of the particle or the sound wave. The SI unit of sound intensity is Watt per square metre.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE