A sphere is inscribed in the tetrahedron whose faces are $x=0,y=0,z=0$ and $2x+6y+3z-14=0$. Find its center and radius.
$\begin{align}
& \text{A}\text{. }\left( \dfrac{7}{2},\dfrac{7}{2},\dfrac{7}{2} \right),\dfrac{7}{2} \\
& \text{B}\text{. }\left( \dfrac{7}{9},\dfrac{7}{9},\dfrac{7}{9} \right),\dfrac{7}{9} \\
& \text{C}\text{. }\left( \dfrac{7}{2},\dfrac{7}{2},\dfrac{7}{2} \right),\dfrac{7}{9} \\
& \text{D}\text{. None of these} \\
\end{align}$
Answer
Verified
459.6k+ views
Hint: As given in the question the sphere is inscribed in the tetrahedron, so the length of the perpendicular from the center upon each of the faces of the tetrahedron is equal to the radius of the sphere. Then, by using the distance formula of a point from the plane is used to obtain the desired answer.
If $\left( l,m,n \right)$ is a point and $ax+by+cz=d$ is a plane, the distance formula will be
$\dfrac{d-ax-by-cz}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
Complete step-by-step solution:
If $\left( l,m,n \right)$ is a point and $ax+by+cz=d$ is a plane, the distance formula will be
$\dfrac{d-ax-by-cz}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
We have given that a sphere is inscribed in the tetrahedron whose faces are $x=0,y=0,z=0$ and $2x+6y+3z-14=0$.
We have to find its center and radius.
Let $\left( a,b,c \right)$ be the center and $r$ is the radius of the sphere inscribed in the tetrahedron.
As given the sphere is inscribed in the tetrahedron, so the length of the perpendicular from the center $\left( a,b,c \right)$ upon each of the faces of the tetrahedron is equal to the radius of the sphere. So, mathematically we represent it as
$\dfrac{a}{1}=\dfrac{b}{1}=\dfrac{c}{1}=r..............(i)$
Now, we know that the distance formula is given as $\dfrac{d-ax-by-cz}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
Where, $\left( l,m,n \right)$ is a point and $ax+by+cz=d$ is a plane
Now, we have points $\left( a,b,c \right)$ and plane given in the question is $2x+6y+3z-14=0$
When we substitute the values in the distance formula, we get
\[\begin{align}
& \Rightarrow \dfrac{14-2a-6b-3c}{\sqrt{{{2}^{2}}+{{6}^{2}}+{{3}^{2}}}} \\
& \Rightarrow \dfrac{14-2a-6b-3c}{\sqrt{4+36+9}} \\
& \Rightarrow \dfrac{14-2a-6b-3c}{\sqrt{49}} \\
& \Rightarrow \dfrac{14-2a-6b-3c}{7}.....................(ii) \\
\end{align}\]
Now, equating equation (i) and (ii), we get
\[a=b=c=r=\dfrac{14-2a-6b-3c}{7}\]
\[a=b=c=r=\dfrac{14-2a-6b-3c}{7}\]
As $a=b=c$ , so the above equation becomes
\[\begin{align}
& a=\dfrac{14-2a-6a-3a}{7} \\
& 7a=14-11a \\
&\Rightarrow 7a+11a=14 \\
&\Rightarrow 18a=14 \\
&\Rightarrow a=\dfrac{14}{18} \\
&\Rightarrow a=\dfrac{7}{9} \\
\end{align}\]
As $a=b=c$, so \[a=\dfrac{7}{9};b=\dfrac{7}{9};c=\dfrac{7}{9};r=\dfrac{7}{9}\]
We get center of the sphere $\left( \dfrac{7}{9},\dfrac{7}{9},\dfrac{7}{9} \right)$ and radius $\dfrac{7}{9}$.
So the option B is the correct answer.
Note: We note the equations of the given planes $x=0,y=0,z=0$ correspond to coordinate planes $yz-$plane, $zx-$plane and $xy-$plane respectively in space. So $\left( a,b,c \right)$ represent direction ratios of the line passing through origin and $\left( a,b,c \right)$ and hence $\dfrac{a}{1},\dfrac{b}{1},\dfrac{c}{1}$ becomes the distance from $yz-$plane, $zx-$plane and $xy-$plane respectively. The sphere inscribed in a polyhedron is called insphere. We can alternatively solve using the equation touching the coordinate planes ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2\lambda \left( x+y+z \right)+2{{\lambda }^{2}}=0$ where center is $\left( \lambda ,\lambda ,\lambda \right)$ and radius $\lambda $.
If $\left( l,m,n \right)$ is a point and $ax+by+cz=d$ is a plane, the distance formula will be
$\dfrac{d-ax-by-cz}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
Complete step-by-step solution:
If $\left( l,m,n \right)$ is a point and $ax+by+cz=d$ is a plane, the distance formula will be
$\dfrac{d-ax-by-cz}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
We have given that a sphere is inscribed in the tetrahedron whose faces are $x=0,y=0,z=0$ and $2x+6y+3z-14=0$.
We have to find its center and radius.
Let $\left( a,b,c \right)$ be the center and $r$ is the radius of the sphere inscribed in the tetrahedron.
As given the sphere is inscribed in the tetrahedron, so the length of the perpendicular from the center $\left( a,b,c \right)$ upon each of the faces of the tetrahedron is equal to the radius of the sphere. So, mathematically we represent it as
$\dfrac{a}{1}=\dfrac{b}{1}=\dfrac{c}{1}=r..............(i)$
Now, we know that the distance formula is given as $\dfrac{d-ax-by-cz}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}$
Where, $\left( l,m,n \right)$ is a point and $ax+by+cz=d$ is a plane
Now, we have points $\left( a,b,c \right)$ and plane given in the question is $2x+6y+3z-14=0$
When we substitute the values in the distance formula, we get
\[\begin{align}
& \Rightarrow \dfrac{14-2a-6b-3c}{\sqrt{{{2}^{2}}+{{6}^{2}}+{{3}^{2}}}} \\
& \Rightarrow \dfrac{14-2a-6b-3c}{\sqrt{4+36+9}} \\
& \Rightarrow \dfrac{14-2a-6b-3c}{\sqrt{49}} \\
& \Rightarrow \dfrac{14-2a-6b-3c}{7}.....................(ii) \\
\end{align}\]
Now, equating equation (i) and (ii), we get
\[a=b=c=r=\dfrac{14-2a-6b-3c}{7}\]
\[a=b=c=r=\dfrac{14-2a-6b-3c}{7}\]
As $a=b=c$ , so the above equation becomes
\[\begin{align}
& a=\dfrac{14-2a-6a-3a}{7} \\
& 7a=14-11a \\
&\Rightarrow 7a+11a=14 \\
&\Rightarrow 18a=14 \\
&\Rightarrow a=\dfrac{14}{18} \\
&\Rightarrow a=\dfrac{7}{9} \\
\end{align}\]
As $a=b=c$, so \[a=\dfrac{7}{9};b=\dfrac{7}{9};c=\dfrac{7}{9};r=\dfrac{7}{9}\]
We get center of the sphere $\left( \dfrac{7}{9},\dfrac{7}{9},\dfrac{7}{9} \right)$ and radius $\dfrac{7}{9}$.
So the option B is the correct answer.
Note: We note the equations of the given planes $x=0,y=0,z=0$ correspond to coordinate planes $yz-$plane, $zx-$plane and $xy-$plane respectively in space. So $\left( a,b,c \right)$ represent direction ratios of the line passing through origin and $\left( a,b,c \right)$ and hence $\dfrac{a}{1},\dfrac{b}{1},\dfrac{c}{1}$ becomes the distance from $yz-$plane, $zx-$plane and $xy-$plane respectively. The sphere inscribed in a polyhedron is called insphere. We can alternatively solve using the equation touching the coordinate planes ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2\lambda \left( x+y+z \right)+2{{\lambda }^{2}}=0$ where center is $\left( \lambda ,\lambda ,\lambda \right)$ and radius $\lambda $.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE