Answer
Verified
99.9k+ views
Hint: First compare the equation given in the question with the general standing wave equation generated due to superposition of two waves travelling in opposite directions. We can get the value of angular frequency and propagation constant from here. Then using these two values, calculate the velocity of the wave.
Formulas used:
$v = \dfrac{\omega }{k}$ where $v$ is the velocity of the wave, $w$is its angular frequency and $k$ is its propagation constant.
Complete step by step answer
Standing or stationary waves can be generated in two ways:
1. By moving the medium in a direction opposite to the wave.
2. By the superposition of two waves with equal frequency travelling in opposite directions.
In this question, the standing wave is generated due to the superposition of two waves.
Let us consider two waves travelling in positive $x$ direction and negative $x$ direction represented by the equations
${y_1} = a\sin \left( {kx - \omega t} \right)$ and ${y_2} = a\sin \left( {kx + \omega t} \right)$
Where $a$ is the amplitude of the waves, $k$is the propagation constant and $w$ is the angular velocity.
By the principle of superposition the resultant standing wave is given by,
$y = {y_1} + {y_2}$
$
\Rightarrow y = a\left[ {\sin \left( {kx - \omega t} \right) + \sin \left( {kx + \omega t} \right)} \right] \\
\Rightarrow y = a\left[ {\sin kx\cos \omega t - \cos kx\sin \omega t + \sin kx\cos \omega t + \cos kx\sin \omega t} \right] \\
\Rightarrow y = 2a\sin kx\cos \omega t \\
\Rightarrow y = A\sin kx\cos \omega t \\
$
Comparing this equation with the equation given in the question we have,
$k = \dfrac{{5\pi }}{4}$ and $\omega = 200\pi $
Now velocity of a wave is given by the formula, $v = \dfrac{\omega }{k}$
So, $v = \dfrac{{200\pi }}{{\dfrac{{5\pi }}{4}}} = \dfrac{{200\pi \times 4}}{{5\pi }} = 160m/s$
Therefore, the speed of the travelling wave moving in positive $x$ direction is $160m/s$
So, the correct option is D.
Note: An example of standing wave formation is in the open ocean formed by waves with the same wave period moving in opposite directions. These may form near storm centres, or from reflection of a swell at the shore.
Formulas used:
$v = \dfrac{\omega }{k}$ where $v$ is the velocity of the wave, $w$is its angular frequency and $k$ is its propagation constant.
Complete step by step answer
Standing or stationary waves can be generated in two ways:
1. By moving the medium in a direction opposite to the wave.
2. By the superposition of two waves with equal frequency travelling in opposite directions.
In this question, the standing wave is generated due to the superposition of two waves.
Let us consider two waves travelling in positive $x$ direction and negative $x$ direction represented by the equations
${y_1} = a\sin \left( {kx - \omega t} \right)$ and ${y_2} = a\sin \left( {kx + \omega t} \right)$
Where $a$ is the amplitude of the waves, $k$is the propagation constant and $w$ is the angular velocity.
By the principle of superposition the resultant standing wave is given by,
$y = {y_1} + {y_2}$
$
\Rightarrow y = a\left[ {\sin \left( {kx - \omega t} \right) + \sin \left( {kx + \omega t} \right)} \right] \\
\Rightarrow y = a\left[ {\sin kx\cos \omega t - \cos kx\sin \omega t + \sin kx\cos \omega t + \cos kx\sin \omega t} \right] \\
\Rightarrow y = 2a\sin kx\cos \omega t \\
\Rightarrow y = A\sin kx\cos \omega t \\
$
Comparing this equation with the equation given in the question we have,
$k = \dfrac{{5\pi }}{4}$ and $\omega = 200\pi $
Now velocity of a wave is given by the formula, $v = \dfrac{\omega }{k}$
So, $v = \dfrac{{200\pi }}{{\dfrac{{5\pi }}{4}}} = \dfrac{{200\pi \times 4}}{{5\pi }} = 160m/s$
Therefore, the speed of the travelling wave moving in positive $x$ direction is $160m/s$
So, the correct option is D.
Note: An example of standing wave formation is in the open ocean formed by waves with the same wave period moving in opposite directions. These may form near storm centres, or from reflection of a swell at the shore.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main