Answer
Verified
469.2k+ views
Hint: To solve this question, first of all we will assume variables for principal amount and rate of interest. We will use the formula for the future value at compound interest. The formula for future value is FV = $ {{\left( 1+\dfrac{R}{100} \right)}^{n}}\times P $ Since the time period for compounding is not given, we assume that the principal amount is compounded annually. Taking the future value twice that of principal amount, we will try to find a relation between principal amount and rate of interest. Then, we will make the future value 8 times that of the principal amount and use the derived relation to find the number of years required for it.
Complete step-by-step answer:
Let P be the principal amount which compounds at a rate of interest R.
It is given that it takes 15 years for the money to get doubled.
Thus, after 15 years, future value = 2(Principal amount)
$ \Rightarrow $ FV = 2P
So, we will substitute FV = 2P and n = 15 in the formula for future value.
$ \Rightarrow $ 2P = $ {{\left( 1+\dfrac{R}{100} \right)}^{15}}\times $ P
$ \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{15}} $ = 2……(1)
Now, we need to find the number of years required for the future value to be 8 times the principal amount.
Let the number of years be n.
We will substitute future value = 8(principal amount)
Thus, FV = 8(P)
$ \Rightarrow $ 8P = $ {{\left( 1+\dfrac{R}{100} \right)}^{n}}\times $ P
$ \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}} $ = 8
$ \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}}={{2}^{3}} $
From (1), we know that $ {{\left( 1+\dfrac{R}{100} \right)}^{15}} $ = 2
$ \begin{align}
& \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}}={{\left[ {{\left( 1+\dfrac{R}{100} \right)}^{15}} \right]}^{3}} \\
& \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}}={{\left( 1+\dfrac{R}{100} \right)}^{45}} \\
\end{align} $
$ \Rightarrow $ n = 45
Therefore, it takes 45 years for the principal amount to become 8 times.
So, the correct answer is “Option C”.
Note: There is a shortcut logical way to solve this question. If it takes 15 years for the money to get doubled. It will take more than 15 years to double the doubled money. i.e. it will take 30 years for the amount to be 4 times the initial amount. Now, it takes another 15 years to double the already 4 times increased amount. Therefore, it takes 45 years to get 8 times the initial amount.
Complete step-by-step answer:
Let P be the principal amount which compounds at a rate of interest R.
It is given that it takes 15 years for the money to get doubled.
Thus, after 15 years, future value = 2(Principal amount)
$ \Rightarrow $ FV = 2P
So, we will substitute FV = 2P and n = 15 in the formula for future value.
$ \Rightarrow $ 2P = $ {{\left( 1+\dfrac{R}{100} \right)}^{15}}\times $ P
$ \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{15}} $ = 2……(1)
Now, we need to find the number of years required for the future value to be 8 times the principal amount.
Let the number of years be n.
We will substitute future value = 8(principal amount)
Thus, FV = 8(P)
$ \Rightarrow $ 8P = $ {{\left( 1+\dfrac{R}{100} \right)}^{n}}\times $ P
$ \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}} $ = 8
$ \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}}={{2}^{3}} $
From (1), we know that $ {{\left( 1+\dfrac{R}{100} \right)}^{15}} $ = 2
$ \begin{align}
& \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}}={{\left[ {{\left( 1+\dfrac{R}{100} \right)}^{15}} \right]}^{3}} \\
& \Rightarrow {{\left( 1+\dfrac{R}{100} \right)}^{n}}={{\left( 1+\dfrac{R}{100} \right)}^{45}} \\
\end{align} $
$ \Rightarrow $ n = 45
Therefore, it takes 45 years for the principal amount to become 8 times.
So, the correct answer is “Option C”.
Note: There is a shortcut logical way to solve this question. If it takes 15 years for the money to get doubled. It will take more than 15 years to double the doubled money. i.e. it will take 30 years for the amount to be 4 times the initial amount. Now, it takes another 15 years to double the already 4 times increased amount. Therefore, it takes 45 years to get 8 times the initial amount.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE