Answer
Verified
498k+ views
Hint: The number of burfis in each stack must be the same and be a factor of both $420$ and $130$. So, the number of burfis in each stack will be the H.C.F. of $420$ and $130$.
According to the data given in the question:
Number of Kaju barfis $ = 420$,
Number of Badam burfis $ = 130$.
The burfis need to be stacked in such a way that each of the stacks contains the same number and same type of burfis and they take the least area of the tray which means the number of stacks must be minimum.
$\therefore $So, the number of burfis in each stack must be such that it must be a factor of $420$ and $130$ and for taking the least area of the stack, this number must also be maximum. Therefore, the number of burfis in each stack must be the largest common factor (H.C.F.) of $420$ and $130$.
So, for calculating the H.C.F. , the numbers $420$ and $130$can be written as:
$
\Rightarrow 420 = {2^4} \times 3 \times 5 \times 7, \\
\Rightarrow 130 = 2 \times 5 \times 13. \\
$
The H.C.F. of them will be:
$ \Rightarrow $ H.C.F. $ = 2 \times 5 = 10.$
$\therefore $ H.C.F. of $420$ and $130$ is $10.$ Therefore, each stack must contain $10$ burfis.
Note: We can also calculate the total number of stacks thus formed. Since each stack is having $10$ burfis, the number of Kaju burfi stacks will be:
$ \Rightarrow \dfrac{{420}}{{10}} = 42.$
Whereas the number of Badam burfi stacks will be:
$ \Rightarrow \dfrac{{130}}{{10}} = 13.$
Therefore, the total number of stacks $ = 42 + 13 = 55.$
According to the data given in the question:
Number of Kaju barfis $ = 420$,
Number of Badam burfis $ = 130$.
The burfis need to be stacked in such a way that each of the stacks contains the same number and same type of burfis and they take the least area of the tray which means the number of stacks must be minimum.
$\therefore $So, the number of burfis in each stack must be such that it must be a factor of $420$ and $130$ and for taking the least area of the stack, this number must also be maximum. Therefore, the number of burfis in each stack must be the largest common factor (H.C.F.) of $420$ and $130$.
So, for calculating the H.C.F. , the numbers $420$ and $130$can be written as:
$
\Rightarrow 420 = {2^4} \times 3 \times 5 \times 7, \\
\Rightarrow 130 = 2 \times 5 \times 13. \\
$
The H.C.F. of them will be:
$ \Rightarrow $ H.C.F. $ = 2 \times 5 = 10.$
$\therefore $ H.C.F. of $420$ and $130$ is $10.$ Therefore, each stack must contain $10$ burfis.
Note: We can also calculate the total number of stacks thus formed. Since each stack is having $10$ burfis, the number of Kaju burfi stacks will be:
$ \Rightarrow \dfrac{{420}}{{10}} = 42.$
Whereas the number of Badam burfi stacks will be:
$ \Rightarrow \dfrac{{130}}{{10}} = 13.$
Therefore, the total number of stacks $ = 42 + 13 = 55.$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers