Answer
Verified
474.3k+ views
Hint- The formula that gives the relationship between the focal length, refractive index and the radii of the curvature is known as the Lens maker formula.
Formula used:
*We have the formula for the combination of two lenses as follows.
$\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
*Lens maker’s formula is given below.
$\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$; Where n is refractive index and other symbols have their usual meaning.
Complete step by step answer:
When a symmetric biconvex lens is placed on a layer of liquid placed on top of a plane mirror, then this whole system becomes a combination of convex lens of glass and Plano concave lens of liquid. Let f is the focal length of a combination, ${f_1}$ is the focal length of a convex lens and ${f_2}$ is the focal length of a Plano concave lens of liquid.
Given in the question, for the first measurement, focal length of combination is, f=x and for second measurement focal length of convex lens is ${f_1}$ =y.
Now, for the image to coincide with the needle, ray needs to be normal to the plane mirror that means rays must come from infinity.
Let us use the formula of lens combination$\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$.
$\dfrac{1}{x} = \dfrac{1}{y} + \dfrac{1}{{{f_2}}}$
Let us solve the above expression.
$\dfrac{1}{{{f_2}}} = \dfrac{1}{x} - \dfrac{1}{y}$
On further solving we get the following.
${f_2} = \dfrac{{xy}}{{y - x}}$ (1)
Now, let us obtain the refractive index of liquid in terms of x and y as follows.
We have the lens maker’s formula $\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Now let us write the above formula for the Plano concave lens of liquid.
$\dfrac{1}{{{f_2}}} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Here${R_1} = - R,{R_2} = \infty $, let us substitute these values in the above equation.
$\dfrac{1}{{{f_2}}} = \left( {n - 1} \right)\left( {\dfrac{1}{{ - R}} - \dfrac{1}{\infty }} \right)$
Let us further solve this expression.
$\dfrac{1}{{{f_2}}} = \left( {n - 1} \right)\left( {\dfrac{1}{{ - R}}} \right)$
Now, let us use the equation (1) and above expression becomes,
$\dfrac{{y - x}}{{xy}} = \left( {n - 1} \right)\left( {\dfrac{1}{{ - R}}} \right)$
Let us further simplify and find the value of the refractive index.
$n = 1 - \dfrac{{R\left( {y - x} \right)}}{{xy}}$ (2)
Now let us write the lens makers formula for convex lenses.
Let us substitute these values ${R_1} = R,{R_2} = - R,n = 1.5$ in $\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$.
$\dfrac{1}{y} = \left( {1.5 - 1} \right)\left( {\dfrac{1}{R} + \dfrac{1}{R}} \right)$
Let us simplify the above expression.
$\dfrac{1}{y} = 0.5 \times \dfrac{2}{R} \Rightarrow R = y$ (3)
Now, let us substitute the value from equation (3) to equation (2).
$n = 1 - \dfrac{{y\left( {y - x} \right)}}{{xy}}$
Let us simplify the above expression.
$n = \dfrac{{xy - y\left( {y - x} \right)}}{{xy}} \Rightarrow n = \dfrac{{2x - y}}{{xy}}$
Hence, the refractive index in terms of x and y is $\dfrac{{2x - y}}{{xy}}$.
Note:
*Plano concave lens is a lens having one concave surface and one plane surface and negative focal length.
*Biconvex lenses are used as magnifying lenses.
Formula used:
*We have the formula for the combination of two lenses as follows.
$\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
*Lens maker’s formula is given below.
$\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$; Where n is refractive index and other symbols have their usual meaning.
Complete step by step answer:
When a symmetric biconvex lens is placed on a layer of liquid placed on top of a plane mirror, then this whole system becomes a combination of convex lens of glass and Plano concave lens of liquid. Let f is the focal length of a combination, ${f_1}$ is the focal length of a convex lens and ${f_2}$ is the focal length of a Plano concave lens of liquid.
Given in the question, for the first measurement, focal length of combination is, f=x and for second measurement focal length of convex lens is ${f_1}$ =y.
Now, for the image to coincide with the needle, ray needs to be normal to the plane mirror that means rays must come from infinity.
Let us use the formula of lens combination$\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$.
$\dfrac{1}{x} = \dfrac{1}{y} + \dfrac{1}{{{f_2}}}$
Let us solve the above expression.
$\dfrac{1}{{{f_2}}} = \dfrac{1}{x} - \dfrac{1}{y}$
On further solving we get the following.
${f_2} = \dfrac{{xy}}{{y - x}}$ (1)
Now, let us obtain the refractive index of liquid in terms of x and y as follows.
We have the lens maker’s formula $\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Now let us write the above formula for the Plano concave lens of liquid.
$\dfrac{1}{{{f_2}}} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Here${R_1} = - R,{R_2} = \infty $, let us substitute these values in the above equation.
$\dfrac{1}{{{f_2}}} = \left( {n - 1} \right)\left( {\dfrac{1}{{ - R}} - \dfrac{1}{\infty }} \right)$
Let us further solve this expression.
$\dfrac{1}{{{f_2}}} = \left( {n - 1} \right)\left( {\dfrac{1}{{ - R}}} \right)$
Now, let us use the equation (1) and above expression becomes,
$\dfrac{{y - x}}{{xy}} = \left( {n - 1} \right)\left( {\dfrac{1}{{ - R}}} \right)$
Let us further simplify and find the value of the refractive index.
$n = 1 - \dfrac{{R\left( {y - x} \right)}}{{xy}}$ (2)
Now let us write the lens makers formula for convex lenses.
Let us substitute these values ${R_1} = R,{R_2} = - R,n = 1.5$ in $\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$.
$\dfrac{1}{y} = \left( {1.5 - 1} \right)\left( {\dfrac{1}{R} + \dfrac{1}{R}} \right)$
Let us simplify the above expression.
$\dfrac{1}{y} = 0.5 \times \dfrac{2}{R} \Rightarrow R = y$ (3)
Now, let us substitute the value from equation (3) to equation (2).
$n = 1 - \dfrac{{y\left( {y - x} \right)}}{{xy}}$
Let us simplify the above expression.
$n = \dfrac{{xy - y\left( {y - x} \right)}}{{xy}} \Rightarrow n = \dfrac{{2x - y}}{{xy}}$
Hence, the refractive index in terms of x and y is $\dfrac{{2x - y}}{{xy}}$.
Note:
*Plano concave lens is a lens having one concave surface and one plane surface and negative focal length.
*Biconvex lenses are used as magnifying lenses.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE