Answer
Verified
480k+ views
Hint: Find the units of work done by each of them per day then we can find number of units of total work. Do this by using per day fraction of work.
\[Per\text{ }day\text{ }fraction\text{ }=\text{ }\dfrac{1}{Time\text{ }taken}\]
Complete step-by-step answer:
They will work together for 2 days and finish the work.
Case 1: Let the time taken by A to finish a piece of work be a. Then the per day fraction of work done by A will be $\left( \dfrac{1}{a} \right)$
Case 2: Let the time taken by B to finish a piece of work be b. Then the per day fraction of work done by B will be $\left( \dfrac{1}{b} \right)$
Case 3: Let the time taken by C to finish a piece of work be c. Then the per day fraction of work done by C will be $\left( \dfrac{1}{c} \right)$
So,
Total per day fraction of work will be sum of all cases
Total per day fraction of work = (Case 1) + (Case 2) + (Case 3)
Total per day fraction of work = $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
We know:
(Total time).(Total per day fraction of work) = 1
Here 1 implies that work is completed.
So, by substituting 2 days into equation, we get:
$2\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)=1.........(i)$
Given:
A take twice as much time as B.
A take thrice as much time as C.
By using above conditions, we get:
a = 2b and a = 3c
By substituting these into equation(i), we get
$2\left( \dfrac{1}{a}+\dfrac{1}{\dfrac{a}{2}}+\dfrac{1}{\dfrac{a}{3}} \right)=1$
By solving this, we get:
$2\left( \dfrac{1}{a}+\dfrac{2}{a}+\dfrac{3}{a} \right)=1$
By taking least common multiple and then adding the fractions, we get:
$2\left( \dfrac{6}{a} \right)=1$
By multiplying both sides with a, we get:
$\dfrac{12}{a}.a=a$
a = 12
By using given conditions, we found relation between a and b:
a = 2b
By substituting value of a, we get:
12 = 2b
By dividing 2 on both sides, we get:
$b=\dfrac{12}{2}=6$
Therefore, it takes 6 days for B to complete the work alone.
Option (d) is correct.
Note: Do not confuse time taken and per day fraction of work. The simple relation is stated in the hint.
\[Per\text{ }day\text{ }fraction\text{ }=\text{ }\dfrac{1}{Time\text{ }taken}\]
Complete step-by-step answer:
They will work together for 2 days and finish the work.
Case 1: Let the time taken by A to finish a piece of work be a. Then the per day fraction of work done by A will be $\left( \dfrac{1}{a} \right)$
Case 2: Let the time taken by B to finish a piece of work be b. Then the per day fraction of work done by B will be $\left( \dfrac{1}{b} \right)$
Case 3: Let the time taken by C to finish a piece of work be c. Then the per day fraction of work done by C will be $\left( \dfrac{1}{c} \right)$
So,
Total per day fraction of work will be sum of all cases
Total per day fraction of work = (Case 1) + (Case 2) + (Case 3)
Total per day fraction of work = $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
We know:
(Total time).(Total per day fraction of work) = 1
Here 1 implies that work is completed.
So, by substituting 2 days into equation, we get:
$2\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)=1.........(i)$
Given:
A take twice as much time as B.
A take thrice as much time as C.
By using above conditions, we get:
a = 2b and a = 3c
By substituting these into equation(i), we get
$2\left( \dfrac{1}{a}+\dfrac{1}{\dfrac{a}{2}}+\dfrac{1}{\dfrac{a}{3}} \right)=1$
By solving this, we get:
$2\left( \dfrac{1}{a}+\dfrac{2}{a}+\dfrac{3}{a} \right)=1$
By taking least common multiple and then adding the fractions, we get:
$2\left( \dfrac{6}{a} \right)=1$
By multiplying both sides with a, we get:
$\dfrac{12}{a}.a=a$
a = 12
By using given conditions, we found relation between a and b:
a = 2b
By substituting value of a, we get:
12 = 2b
By dividing 2 on both sides, we get:
$b=\dfrac{12}{2}=6$
Therefore, it takes 6 days for B to complete the work alone.
Option (d) is correct.
Note: Do not confuse time taken and per day fraction of work. The simple relation is stated in the hint.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE