
A tangent to the parabola ${{x}^{2}}+4ay=0$ cuts the parabola ${{x}^{2}}=4by$, at A and B the locus of the midpoint of AB is
(a) $\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y$
(b) $\left( b+2a \right){{x}^{2}}=4{{b}^{2}}y$
(c) $\left( a+2b \right){{y}^{2}}=4{{b}^{2}}x$
(d) $\left( b+2a \right){{x}^{2}}=4{{a}^{2}}y$
Answer
608.7k+ views
Hint: Write equation of tangent on the parabola ${{x}^{2}}+4ay=0$. And find the intersection of tangent and the parabola ${{x}^{2}}=4by$. Don’t calculate the exact coordinates. Try to use the equation to get locus of the mid-points of A and B.
Complete step-by-step answer:
Let us suppose a parametric coordinate on parabola ${{x}^{2}}+4ay=0$ as $\left( 2at,-a{{t}^{2}} \right)$.
Now, we can write the equation of tangent through this point by T=0.
If $\left( {{x}_{1,}}{{y}_{1}} \right)$is a point on parabola, ${{x}^{2}}=-4ay$, then tangent through it is given as
$x{{x}_{1}}=-4a\dfrac{\left( y+{{y}_{1}} \right)}{2}=-2a\left( y+{{y}_{1}} \right)$
As, we have points $\left( {{x}_{1,}}{{y}_{1}} \right)$ as $\left( 2at,-a{{t}^{2}} \right)$.
Hence tangent through it be
$\begin{align}
& x\left( 2at \right)=-2a\left( y+\left( -a{{t}^{2}} \right) \right) \\
& \Rightarrow 2atx=-2a\left( y-a{{t}^{2}} \right) \\
& \Rightarrow atx+ay-{{a}^{2}}{{t}^{2}}=0 \\
& \Rightarrow tx+y-a{{t}^{2}}=0............(i) \\
\end{align}$
Now, let us suppose, tangent is intersecting the parabola ${{x}^{2}}=4by$ at points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{x}},{{y}_{2}} \right)$ and mid-point of them as (h,k).
Let us find the intersection points of parabola ${{x}^{2}}=4by$ and the tangent ‘T’ on ${{x}^{2}}=-4ay$.
So, from equation ${{x}^{2}}=4by$, we get
$y=\dfrac{{{x}^{2}}}{4b}$ ………………….. (ii)
Putting value of ‘y’ from equation (ii) in equation (i), we get
$\begin{align}
& tx+\dfrac{{{x}^{2}}}{4b}-a{{t}^{2}}=0 \\
& \Rightarrow {{x}^{2}}+4btx-4ab{{t}^{2}}=0..........(iii) \\
\end{align}$
As above equation is a quadratic equation so, we can get values of $\left( {{x}_{1}},{{x}_{2}} \right)$ as roots of equation (iii).
Now, we know the relation of roots with the coefficients of quadratic equation which is given as
$\text{sum of roots = - }\dfrac{\text{coefficient of x}}{\text{coefficient of }{{\text{x}}^{\text{2}}}}$ ……….. (iv)
$\text{product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{\text{x}}^{\text{2}}}}$ ……………. (v)
Now, from equation (iii), (iv) and (v), we get
${{x}_{1}}+{{x}_{2}}=-4bt$ ………………. (vi)
${{x}_{2}}+{{x}_{2}}=4ab{{t}^{2}}$ ……………… (vii)
Similarly, we can get a quadratic in ‘y’ if we put value of ‘x’ from equation of tangent i.e. $tx+y-a{{t}^{2}}=0$ in equation of parabola ${{x}^{2}}=4by$. Hence, we get
${{\left( \dfrac{a{{t}^{2}}-y}{t} \right)}^{2}}=4by$
Now, use ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ , we get
$\begin{align}
& \dfrac{{{a}^{2}}{{t}^{4}}+{{y}^{2}}-2ay{{t}^{2}}}{{{t}^{2}}}=4by \\
& \Rightarrow {{y}^{2}}-2a{{t}^{2}}y-4b{{t}^{2}}y+{{a}^{2}}{{t}^{4}}=0 \\
& \Rightarrow {{y}^{2}}-\left( 2a{{t}^{2}}+4b{{t}^{2}} \right)y+{{a}^{2}}+{{t}^{4}}=0.......(viii) \\
\end{align}$
Now, ${{y}_{1}}$ and ${{y}_{2}}$ are roots of above equation hence from equation (iv) and (v), we get
${{y}_{1}}+{{y}_{2}}=2a{{t}^{2}}+4b{{t}^{2}}$ …………….. (ix)
${{y}_{1}}{{y}_{2}}={{a}^{2}}{{t}^{4}}$……………. (x)
Now, as we need to find locus of midpoint of AB which can be given as
$h=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and $k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$
Hence, from equation (vi) and (ix), we get
$h=\dfrac{-4bt}{2}$ and $k=\dfrac{2a{{t}^{2}}+4b{{t}^{2}}}{2}$
H=-2bt and $k=\dfrac{2a{{t}^{2}}}{2}+\dfrac{4b{{t}^{2}}}{2}=a{{t}^{2}}+2b{{t}^{2}}$
Now, we can eliminate ‘t’ by substituting value of ‘t’ from relation h and t to relation ‘k’ and ’t’, hence, we get so, we have
$t=\dfrac{-h}{2b}$
And hence
$\begin{align}
& k=a{{\left( \dfrac{-h}{2b} \right)}^{2}}+2b{{\left( \dfrac{-h}{2b} \right)}^{2}} \\
& k=\dfrac{{{h}^{2}}a}{4{{b}^{2}}}+\dfrac{2b{{h}^{2}}}{4{{b}^{2}}} \\
\end{align}$
Now, replacing (h, k) by (x, y) to get the required locus. Hence, we get
$\begin{align}
& y=\dfrac{{{x}^{2}}a}{4{{b}^{2}}}+\dfrac{2b{{x}^{2}}}{4{{b}^{2}}} \\
& 4{{b}^{2}}y={{x}^{2}}\left( a+2b \right) \\
\end{align}$
Hence, option (a) is the correct answer.
Note: Another approach for the given problem would be that we can suppose parametric coordinates of points A and B lying on ${{x}^{2}}=4by$. And write the equation of line passing through A and B. Now, this line is acting as a tangent for ${{x}^{2}}=-4ay$. So, intersection of them would be the only point. So, use this condition to get equations in parametric variables and hence get locus of midpoint of A and B.
One can suppose parametric coordinates at ${{x}^{2}}=-4ay$ as $\left( -2at,-a{{t}^{2}} \right)$as well.
Calculation is the important side of the problem as well. So, take care of it.
Writing tangent equation through point $\left( {{x}_{1}},{{y}_{1}} \right)$ on any curve f(x)=0 is given by replacing
$\begin{align}
& {{\text{x}}^{\text{2}}}\text{ by x}{{\text{x}}_{\text{1}}} \\
& {{\text{y}}^{\text{2}}}\text{ by y}{{\text{y}}_{\text{1}}} \\
& \text{x by }\dfrac{\text{x+}{{\text{x}}_{\text{1}}}}{\text{2}} \\
& \text{y by }\dfrac{\text{y+}{{\text{y}}_{\text{1}}}}{\text{2}} \\
\end{align}$
Complete step-by-step answer:
Let us suppose a parametric coordinate on parabola ${{x}^{2}}+4ay=0$ as $\left( 2at,-a{{t}^{2}} \right)$.
Now, we can write the equation of tangent through this point by T=0.
If $\left( {{x}_{1,}}{{y}_{1}} \right)$is a point on parabola, ${{x}^{2}}=-4ay$, then tangent through it is given as
$x{{x}_{1}}=-4a\dfrac{\left( y+{{y}_{1}} \right)}{2}=-2a\left( y+{{y}_{1}} \right)$
As, we have points $\left( {{x}_{1,}}{{y}_{1}} \right)$ as $\left( 2at,-a{{t}^{2}} \right)$.
Hence tangent through it be
$\begin{align}
& x\left( 2at \right)=-2a\left( y+\left( -a{{t}^{2}} \right) \right) \\
& \Rightarrow 2atx=-2a\left( y-a{{t}^{2}} \right) \\
& \Rightarrow atx+ay-{{a}^{2}}{{t}^{2}}=0 \\
& \Rightarrow tx+y-a{{t}^{2}}=0............(i) \\
\end{align}$
Now, let us suppose, tangent is intersecting the parabola ${{x}^{2}}=4by$ at points $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{x}},{{y}_{2}} \right)$ and mid-point of them as (h,k).
Let us find the intersection points of parabola ${{x}^{2}}=4by$ and the tangent ‘T’ on ${{x}^{2}}=-4ay$.
So, from equation ${{x}^{2}}=4by$, we get
$y=\dfrac{{{x}^{2}}}{4b}$ ………………….. (ii)
Putting value of ‘y’ from equation (ii) in equation (i), we get
$\begin{align}
& tx+\dfrac{{{x}^{2}}}{4b}-a{{t}^{2}}=0 \\
& \Rightarrow {{x}^{2}}+4btx-4ab{{t}^{2}}=0..........(iii) \\
\end{align}$
As above equation is a quadratic equation so, we can get values of $\left( {{x}_{1}},{{x}_{2}} \right)$ as roots of equation (iii).
Now, we know the relation of roots with the coefficients of quadratic equation which is given as
$\text{sum of roots = - }\dfrac{\text{coefficient of x}}{\text{coefficient of }{{\text{x}}^{\text{2}}}}$ ……….. (iv)
$\text{product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{\text{x}}^{\text{2}}}}$ ……………. (v)
Now, from equation (iii), (iv) and (v), we get
${{x}_{1}}+{{x}_{2}}=-4bt$ ………………. (vi)
${{x}_{2}}+{{x}_{2}}=4ab{{t}^{2}}$ ……………… (vii)
Similarly, we can get a quadratic in ‘y’ if we put value of ‘x’ from equation of tangent i.e. $tx+y-a{{t}^{2}}=0$ in equation of parabola ${{x}^{2}}=4by$. Hence, we get
${{\left( \dfrac{a{{t}^{2}}-y}{t} \right)}^{2}}=4by$
Now, use ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ , we get
$\begin{align}
& \dfrac{{{a}^{2}}{{t}^{4}}+{{y}^{2}}-2ay{{t}^{2}}}{{{t}^{2}}}=4by \\
& \Rightarrow {{y}^{2}}-2a{{t}^{2}}y-4b{{t}^{2}}y+{{a}^{2}}{{t}^{4}}=0 \\
& \Rightarrow {{y}^{2}}-\left( 2a{{t}^{2}}+4b{{t}^{2}} \right)y+{{a}^{2}}+{{t}^{4}}=0.......(viii) \\
\end{align}$
Now, ${{y}_{1}}$ and ${{y}_{2}}$ are roots of above equation hence from equation (iv) and (v), we get
${{y}_{1}}+{{y}_{2}}=2a{{t}^{2}}+4b{{t}^{2}}$ …………….. (ix)
${{y}_{1}}{{y}_{2}}={{a}^{2}}{{t}^{4}}$……………. (x)
Now, as we need to find locus of midpoint of AB which can be given as
$h=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and $k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$
Hence, from equation (vi) and (ix), we get
$h=\dfrac{-4bt}{2}$ and $k=\dfrac{2a{{t}^{2}}+4b{{t}^{2}}}{2}$
H=-2bt and $k=\dfrac{2a{{t}^{2}}}{2}+\dfrac{4b{{t}^{2}}}{2}=a{{t}^{2}}+2b{{t}^{2}}$
Now, we can eliminate ‘t’ by substituting value of ‘t’ from relation h and t to relation ‘k’ and ’t’, hence, we get so, we have
$t=\dfrac{-h}{2b}$
And hence
$\begin{align}
& k=a{{\left( \dfrac{-h}{2b} \right)}^{2}}+2b{{\left( \dfrac{-h}{2b} \right)}^{2}} \\
& k=\dfrac{{{h}^{2}}a}{4{{b}^{2}}}+\dfrac{2b{{h}^{2}}}{4{{b}^{2}}} \\
\end{align}$
Now, replacing (h, k) by (x, y) to get the required locus. Hence, we get
$\begin{align}
& y=\dfrac{{{x}^{2}}a}{4{{b}^{2}}}+\dfrac{2b{{x}^{2}}}{4{{b}^{2}}} \\
& 4{{b}^{2}}y={{x}^{2}}\left( a+2b \right) \\
\end{align}$
Hence, option (a) is the correct answer.
Note: Another approach for the given problem would be that we can suppose parametric coordinates of points A and B lying on ${{x}^{2}}=4by$. And write the equation of line passing through A and B. Now, this line is acting as a tangent for ${{x}^{2}}=-4ay$. So, intersection of them would be the only point. So, use this condition to get equations in parametric variables and hence get locus of midpoint of A and B.
One can suppose parametric coordinates at ${{x}^{2}}=-4ay$ as $\left( -2at,-a{{t}^{2}} \right)$as well.
Calculation is the important side of the problem as well. So, take care of it.
Writing tangent equation through point $\left( {{x}_{1}},{{y}_{1}} \right)$ on any curve f(x)=0 is given by replacing
$\begin{align}
& {{\text{x}}^{\text{2}}}\text{ by x}{{\text{x}}_{\text{1}}} \\
& {{\text{y}}^{\text{2}}}\text{ by y}{{\text{y}}_{\text{1}}} \\
& \text{x by }\dfrac{\text{x+}{{\text{x}}_{\text{1}}}}{\text{2}} \\
& \text{y by }\dfrac{\text{y+}{{\text{y}}_{\text{1}}}}{\text{2}} \\
\end{align}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

