
A tension of 22N is applied to a copper wire of cross-sectional area $0.02c{m^2}$. Young’s modulus of copper $1 \cdot 1 \times {10^{11}}\dfrac{N}{{{m^2}}}$ and Poisson’s ratio is 0.32. The decrease in cross sectional area will be:
A) $1 \cdot 28 \times {10^{ - 6}}c{m^2}$.
B) $1 \cdot 6 \times {10^{ - 6}}c{m^2}$.
C) $2 \cdot 56 \times {10^{ - 6}}c{m^2}$.
D) $0 \cdot 64 \times {10^{ - 6}}c{m^2}$.
Answer
473.7k+ views
Hint:Young’s modulus is defined as the ratio of the longitudinal stress to the strain. The young’s modulus also gives the idea about the strength of any material. Poisson’s ratio is the term which comes when there is expansion of material in the perpendicular direction of the applied force and it is the ratio of the lateral strain to longitudinal strain.
Formula used:The formula used for the Young’s modulus is given by,${\text{Young's modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}} = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
Also the formula for the Poisson’s ratio is given by${\text{poisson's ratio}}\left( \mu \right){\text{ = }} - \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}} = - \dfrac{{{\varepsilon _{lateral}}}}{{{\varepsilon _{axial}}}}$.
Complete step by step solution:
Here it is given that the Young’s modulus is given by, $Y = \dfrac{{Fl}}{{A\Delta l}}$ and also we know that the Poisson’s ratio is $\mu = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$.
Rearranging the terms we get,
$\sigma = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
$\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$………eq. (1)
Replace the value of equation (1) in the formula of Young’s modulus.
\[ \Rightarrow Y = \dfrac{{\left( {\dfrac{F}{A}} \right) \cdot l}}{{\Delta l}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
Where $\sigma $ is the stress.
Replace the value of $\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$.
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left[ {\left( {\dfrac{1}{\mu }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)} \right]}}\]
\[ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}\]
Put the value force, Poisson’s ratio, area of cross section and Young’s modulus in the above formula.
$ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}$
$ \Rightarrow \dfrac{{\Delta r}}{r} = \left[ {\dfrac{{0.32 \times \left( {\dfrac{{22}}{{0.02 \times {{10}^{ - 4}}}}} \right)}}{{1.1 \times {{10}^{11}}}}} \right]$
$ \Rightarrow \dfrac{{\Delta r}}{r} = 32 \times {10^{ - 6}}$………eq. (2)
The area of the cross section is given by $A = \pi {r^2}$ and also$\Delta A = 2\pi r\Delta r$.
Let us calculate$\dfrac{{\Delta A}}{A}$.
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\pi r\Delta r}}{{\pi {r^2}}}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$………eq. (3)
Put the value of $\dfrac{{\Delta r}}{r}$ from equation (2) to equation (3).
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2 \cdot \left( {32 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = A \cdot \left( {64 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = 0.02 \times 64 \times {10^{ - 6}}$
$ \Rightarrow \Delta A = 1.28 \times {10^{ - 6}}c{m^2}$
So the correct answer for this problem is option A.
Note:The students should remember the formula and concept of the young’s modulus as it can help in solving such problems also should students remember the concept of the Poisson’s ratio because the problem where there is expansion of the material takes place in the perpendicular direction of the applied force the concept of Poisson’s ratio should be used.
Formula used:The formula used for the Young’s modulus is given by,${\text{Young's modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}} = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
Also the formula for the Poisson’s ratio is given by${\text{poisson's ratio}}\left( \mu \right){\text{ = }} - \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}} = - \dfrac{{{\varepsilon _{lateral}}}}{{{\varepsilon _{axial}}}}$.
Complete step by step solution:
Here it is given that the Young’s modulus is given by, $Y = \dfrac{{Fl}}{{A\Delta l}}$ and also we know that the Poisson’s ratio is $\mu = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$.
Rearranging the terms we get,
$\sigma = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
$\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$………eq. (1)
Replace the value of equation (1) in the formula of Young’s modulus.
\[ \Rightarrow Y = \dfrac{{\left( {\dfrac{F}{A}} \right) \cdot l}}{{\Delta l}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
Where $\sigma $ is the stress.
Replace the value of $\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$.
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left[ {\left( {\dfrac{1}{\mu }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)} \right]}}\]
\[ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}\]
Put the value force, Poisson’s ratio, area of cross section and Young’s modulus in the above formula.
$ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}$
$ \Rightarrow \dfrac{{\Delta r}}{r} = \left[ {\dfrac{{0.32 \times \left( {\dfrac{{22}}{{0.02 \times {{10}^{ - 4}}}}} \right)}}{{1.1 \times {{10}^{11}}}}} \right]$
$ \Rightarrow \dfrac{{\Delta r}}{r} = 32 \times {10^{ - 6}}$………eq. (2)
The area of the cross section is given by $A = \pi {r^2}$ and also$\Delta A = 2\pi r\Delta r$.
Let us calculate$\dfrac{{\Delta A}}{A}$.
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\pi r\Delta r}}{{\pi {r^2}}}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$………eq. (3)
Put the value of $\dfrac{{\Delta r}}{r}$ from equation (2) to equation (3).
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2 \cdot \left( {32 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = A \cdot \left( {64 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = 0.02 \times 64 \times {10^{ - 6}}$
$ \Rightarrow \Delta A = 1.28 \times {10^{ - 6}}c{m^2}$
So the correct answer for this problem is option A.
Note:The students should remember the formula and concept of the young’s modulus as it can help in solving such problems also should students remember the concept of the Poisson’s ratio because the problem where there is expansion of the material takes place in the perpendicular direction of the applied force the concept of Poisson’s ratio should be used.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
