Answer
Verified
399.9k+ views
Hint:In order to solve this question, you must be aware of the concept of Biot-Savart’s law which describes the magnetic field generated by a constant electric current.The Biot Savart Law is an equation describing the magnetic field generated by a constant electric current.
Complete step by step answer:
(a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire loop at its centre is given by:
${B_o}$ = $\dfrac{{\mu I}}{{2r}}$
The radius of the circular loop varies from $a$ to $b$. Therefore, total magnetic induction at the centre is:
${B_r}$ = $\smallint \dfrac{{\mu I}}{{2r}}dN$....................(1)
(where $\dfrac{{\mu I}}{{2r}}$ is magnetic induction due to one turn of radius $r$ and $dN$ is the number of turns in the interval ($r$, $r+dr$)i.e.
$dN =\dfrac{N}{{b - a}}dr $
Substituting value of dN in eq (1) and then integrating between a and b, we obtain
${B_o}$ = $\int_a^b {\dfrac{{\mu I}}{{2r}}} \dfrac{N}{{b - a}}dr$
$\Rightarrow {B_o}$= $\dfrac{{\mu IN}}{{2(b - a)}}\ln \dfrac{b}{a}$
$\Rightarrow {B_o}$ = $\dfrac{{4\pi \times {{10}^{ - 7}} \times 100 \times 8 \times {{10}^{ - 3}}}}{{2(50 \times {{10}^{ - 3}})}} \times 2.303$
$\therefore {B_o}$= $7\mu T$
(b) Magnetic moment of a turn of radius $r$ is
$dM =\dfrac{{Ndr}}{{b - a}} \times i\pi {r^2}$
Total magnetic moment of all turns is
$M = \int {dM} $ (1)
Substituting value of dM in eq(1), we get
$M = \dfrac{N}{{b - a}}i\pi \dfrac{{{b^3} - {a^3}}}{3}$
$\Rightarrow M = \dfrac{{100}}{{(100 - 50) \times {{10}^{ - 3}}}} \times 8 \times {10^{ - 3}}4\pi \times {10^{ - 7}}(\dfrac{{{{0.1}^3} - {{0.05}^3}}}{3})$
$\therefore M =15\,mA$
Note:Biot-Savart’s law is applicable for very small conductors which carry current. It is an equation that gives the magnetic field produced due to a current carrying segment.It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. Biot–Savart law is consistent with both Ampere’s circuital law and Gauss’s theorem.
Complete step by step answer:
(a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire loop at its centre is given by:
${B_o}$ = $\dfrac{{\mu I}}{{2r}}$
The radius of the circular loop varies from $a$ to $b$. Therefore, total magnetic induction at the centre is:
${B_r}$ = $\smallint \dfrac{{\mu I}}{{2r}}dN$....................(1)
(where $\dfrac{{\mu I}}{{2r}}$ is magnetic induction due to one turn of radius $r$ and $dN$ is the number of turns in the interval ($r$, $r+dr$)i.e.
$dN =\dfrac{N}{{b - a}}dr $
Substituting value of dN in eq (1) and then integrating between a and b, we obtain
${B_o}$ = $\int_a^b {\dfrac{{\mu I}}{{2r}}} \dfrac{N}{{b - a}}dr$
$\Rightarrow {B_o}$= $\dfrac{{\mu IN}}{{2(b - a)}}\ln \dfrac{b}{a}$
$\Rightarrow {B_o}$ = $\dfrac{{4\pi \times {{10}^{ - 7}} \times 100 \times 8 \times {{10}^{ - 3}}}}{{2(50 \times {{10}^{ - 3}})}} \times 2.303$
$\therefore {B_o}$= $7\mu T$
(b) Magnetic moment of a turn of radius $r$ is
$dM =\dfrac{{Ndr}}{{b - a}} \times i\pi {r^2}$
Total magnetic moment of all turns is
$M = \int {dM} $ (1)
Substituting value of dM in eq(1), we get
$M = \dfrac{N}{{b - a}}i\pi \dfrac{{{b^3} - {a^3}}}{3}$
$\Rightarrow M = \dfrac{{100}}{{(100 - 50) \times {{10}^{ - 3}}}} \times 8 \times {10^{ - 3}}4\pi \times {10^{ - 7}}(\dfrac{{{{0.1}^3} - {{0.05}^3}}}{3})$
$\therefore M =15\,mA$
Note:Biot-Savart’s law is applicable for very small conductors which carry current. It is an equation that gives the magnetic field produced due to a current carrying segment.It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. Biot–Savart law is consistent with both Ampere’s circuital law and Gauss’s theorem.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE