Answer
Verified
389.4k+ views
Hint:In order to solve this question, you must be aware of the concept of Biot-Savart’s law which describes the magnetic field generated by a constant electric current.The Biot Savart Law is an equation describing the magnetic field generated by a constant electric current.
Complete step by step answer:
(a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire loop at its centre is given by:
${B_o}$ = $\dfrac{{\mu I}}{{2r}}$
The radius of the circular loop varies from $a$ to $b$. Therefore, total magnetic induction at the centre is:
${B_r}$ = $\smallint \dfrac{{\mu I}}{{2r}}dN$....................(1)
(where $\dfrac{{\mu I}}{{2r}}$ is magnetic induction due to one turn of radius $r$ and $dN$ is the number of turns in the interval ($r$, $r+dr$)i.e.
$dN =\dfrac{N}{{b - a}}dr $
Substituting value of dN in eq (1) and then integrating between a and b, we obtain
${B_o}$ = $\int_a^b {\dfrac{{\mu I}}{{2r}}} \dfrac{N}{{b - a}}dr$
$\Rightarrow {B_o}$= $\dfrac{{\mu IN}}{{2(b - a)}}\ln \dfrac{b}{a}$
$\Rightarrow {B_o}$ = $\dfrac{{4\pi \times {{10}^{ - 7}} \times 100 \times 8 \times {{10}^{ - 3}}}}{{2(50 \times {{10}^{ - 3}})}} \times 2.303$
$\therefore {B_o}$= $7\mu T$
(b) Magnetic moment of a turn of radius $r$ is
$dM =\dfrac{{Ndr}}{{b - a}} \times i\pi {r^2}$
Total magnetic moment of all turns is
$M = \int {dM} $ (1)
Substituting value of dM in eq(1), we get
$M = \dfrac{N}{{b - a}}i\pi \dfrac{{{b^3} - {a^3}}}{3}$
$\Rightarrow M = \dfrac{{100}}{{(100 - 50) \times {{10}^{ - 3}}}} \times 8 \times {10^{ - 3}}4\pi \times {10^{ - 7}}(\dfrac{{{{0.1}^3} - {{0.05}^3}}}{3})$
$\therefore M =15\,mA$
Note:Biot-Savart’s law is applicable for very small conductors which carry current. It is an equation that gives the magnetic field produced due to a current carrying segment.It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. Biot–Savart law is consistent with both Ampere’s circuital law and Gauss’s theorem.
Complete step by step answer:
(a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire loop at its centre is given by:
${B_o}$ = $\dfrac{{\mu I}}{{2r}}$
The radius of the circular loop varies from $a$ to $b$. Therefore, total magnetic induction at the centre is:
${B_r}$ = $\smallint \dfrac{{\mu I}}{{2r}}dN$....................(1)
(where $\dfrac{{\mu I}}{{2r}}$ is magnetic induction due to one turn of radius $r$ and $dN$ is the number of turns in the interval ($r$, $r+dr$)i.e.
$dN =\dfrac{N}{{b - a}}dr $
Substituting value of dN in eq (1) and then integrating between a and b, we obtain
${B_o}$ = $\int_a^b {\dfrac{{\mu I}}{{2r}}} \dfrac{N}{{b - a}}dr$
$\Rightarrow {B_o}$= $\dfrac{{\mu IN}}{{2(b - a)}}\ln \dfrac{b}{a}$
$\Rightarrow {B_o}$ = $\dfrac{{4\pi \times {{10}^{ - 7}} \times 100 \times 8 \times {{10}^{ - 3}}}}{{2(50 \times {{10}^{ - 3}})}} \times 2.303$
$\therefore {B_o}$= $7\mu T$
(b) Magnetic moment of a turn of radius $r$ is
$dM =\dfrac{{Ndr}}{{b - a}} \times i\pi {r^2}$
Total magnetic moment of all turns is
$M = \int {dM} $ (1)
Substituting value of dM in eq(1), we get
$M = \dfrac{N}{{b - a}}i\pi \dfrac{{{b^3} - {a^3}}}{3}$
$\Rightarrow M = \dfrac{{100}}{{(100 - 50) \times {{10}^{ - 3}}}} \times 8 \times {10^{ - 3}}4\pi \times {10^{ - 7}}(\dfrac{{{{0.1}^3} - {{0.05}^3}}}{3})$
$\therefore M =15\,mA$
Note:Biot-Savart’s law is applicable for very small conductors which carry current. It is an equation that gives the magnetic field produced due to a current carrying segment.It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. Biot–Savart law is consistent with both Ampere’s circuital law and Gauss’s theorem.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE