Answer
Verified
468.3k+ views
Hint:Here it is given that b=c=1. This means it’s an isosceles triangle and height of the altitude is given from these we can find the area of the triangle $\Delta = \dfrac{1}{2} \times b \times h$ and find the value of a. As the triangle is inscribed in the circle so we apply the formula of circumradius $R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ by solving this we get the value of R.
Complete step-by-step answer:
In fig AB=b, AC=c, BC=a , AD=$\sqrt {\dfrac{2}{3}} $
According to the question it is given that
b = c = 1,
So, the nature of the triangle is isosceles.
The length of the altitude AD = C,
Radius of the circle = R
Now we find the area of triangle ABC where BC is the base and AD is the height of the triangle
$\Delta = \dfrac{1}{2} \times b \times h$
$\Delta = \dfrac{1}{2} \times BC \times AD$
Now put the values BC=a , AD=$\sqrt {\dfrac{2}{3}} $, we get,
$\Delta = \dfrac{1}{2} \times a \times \sqrt {\dfrac{2}{3}} $
By solving we get value of a,
\[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \]
Now we find the circumradius of the circle in which triangle is inscribed
$R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ where $\Delta$ is the area of the triangle.
We put the values of \[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \],b=c=1 in the formula we get,
$ \Rightarrow R = \dfrac{{(\dfrac{{2\Delta \sqrt 3 }}{{\sqrt 2 }}) \times 1 \times 1}}{{4 \times \Delta }}$
Now $\sqrt 2 $ comes in the denominator,
$ \Rightarrow R = \dfrac{{2 \times \Delta \times \sqrt 3 }}{{4 \times \sqrt 2 \times \Delta }}$
Now, We cancel out the similar terms
$ \Rightarrow R = \dfrac{{\sqrt 2 \times \sqrt 2 \times \Delta \times \sqrt 3 }}{{2 \times 2 \times \sqrt 2 \times \Delta }}$
We get,
$ \Rightarrow R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
So, the circumradius of the circle$R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$.
So, the correct answer is “Option B”.
Note:The radius of circle circumscribed around a triangle is known as circumradius.Triangle inscribed in a circle means that there is a triangle which is drawn inside the circle. If it is a right angled triangle drawn inside a circle so its hypotenuse is the diameter of the circle.Students should remember formulas of area of triangle and circumradius for solving these types of questions.
Complete step-by-step answer:
In fig AB=b, AC=c, BC=a , AD=$\sqrt {\dfrac{2}{3}} $
According to the question it is given that
b = c = 1,
So, the nature of the triangle is isosceles.
The length of the altitude AD = C,
Radius of the circle = R
Now we find the area of triangle ABC where BC is the base and AD is the height of the triangle
$\Delta = \dfrac{1}{2} \times b \times h$
$\Delta = \dfrac{1}{2} \times BC \times AD$
Now put the values BC=a , AD=$\sqrt {\dfrac{2}{3}} $, we get,
$\Delta = \dfrac{1}{2} \times a \times \sqrt {\dfrac{2}{3}} $
By solving we get value of a,
\[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \]
Now we find the circumradius of the circle in which triangle is inscribed
$R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ where $\Delta$ is the area of the triangle.
We put the values of \[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \],b=c=1 in the formula we get,
$ \Rightarrow R = \dfrac{{(\dfrac{{2\Delta \sqrt 3 }}{{\sqrt 2 }}) \times 1 \times 1}}{{4 \times \Delta }}$
Now $\sqrt 2 $ comes in the denominator,
$ \Rightarrow R = \dfrac{{2 \times \Delta \times \sqrt 3 }}{{4 \times \sqrt 2 \times \Delta }}$
Now, We cancel out the similar terms
$ \Rightarrow R = \dfrac{{\sqrt 2 \times \sqrt 2 \times \Delta \times \sqrt 3 }}{{2 \times 2 \times \sqrt 2 \times \Delta }}$
We get,
$ \Rightarrow R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
So, the circumradius of the circle$R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$.
So, the correct answer is “Option B”.
Note:The radius of circle circumscribed around a triangle is known as circumradius.Triangle inscribed in a circle means that there is a triangle which is drawn inside the circle. If it is a right angled triangle drawn inside a circle so its hypotenuse is the diameter of the circle.Students should remember formulas of area of triangle and circumradius for solving these types of questions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE