A triangle ABC has vertices A, B and C and its respective opposite sides have lengths a, b and c. This triangle ABC is inscribed in a circle of radius R. If b=c=1 and the altitude from A to side BC has length $\sqrt {\dfrac{2}{3}} $, then what is the value of R.
(A) $\sqrt 3 $
(B) $\dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
(C) $\sqrt {\dfrac{1}{2}} $
(D) $\sqrt {\dfrac{1}{3}} $
Answer
Verified
482.1k+ views
Hint:Here it is given that b=c=1. This means it’s an isosceles triangle and height of the altitude is given from these we can find the area of the triangle $\Delta = \dfrac{1}{2} \times b \times h$ and find the value of a. As the triangle is inscribed in the circle so we apply the formula of circumradius $R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ by solving this we get the value of R.
Complete step-by-step answer:
In fig AB=b, AC=c, BC=a , AD=$\sqrt {\dfrac{2}{3}} $
According to the question it is given that
b = c = 1,
So, the nature of the triangle is isosceles.
The length of the altitude AD = C,
Radius of the circle = R
Now we find the area of triangle ABC where BC is the base and AD is the height of the triangle
$\Delta = \dfrac{1}{2} \times b \times h$
$\Delta = \dfrac{1}{2} \times BC \times AD$
Now put the values BC=a , AD=$\sqrt {\dfrac{2}{3}} $, we get,
$\Delta = \dfrac{1}{2} \times a \times \sqrt {\dfrac{2}{3}} $
By solving we get value of a,
\[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \]
Now we find the circumradius of the circle in which triangle is inscribed
$R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ where $\Delta$ is the area of the triangle.
We put the values of \[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \],b=c=1 in the formula we get,
$ \Rightarrow R = \dfrac{{(\dfrac{{2\Delta \sqrt 3 }}{{\sqrt 2 }}) \times 1 \times 1}}{{4 \times \Delta }}$
Now $\sqrt 2 $ comes in the denominator,
$ \Rightarrow R = \dfrac{{2 \times \Delta \times \sqrt 3 }}{{4 \times \sqrt 2 \times \Delta }}$
Now, We cancel out the similar terms
$ \Rightarrow R = \dfrac{{\sqrt 2 \times \sqrt 2 \times \Delta \times \sqrt 3 }}{{2 \times 2 \times \sqrt 2 \times \Delta }}$
We get,
$ \Rightarrow R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
So, the circumradius of the circle$R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$.
So, the correct answer is “Option B”.
Note:The radius of circle circumscribed around a triangle is known as circumradius.Triangle inscribed in a circle means that there is a triangle which is drawn inside the circle. If it is a right angled triangle drawn inside a circle so its hypotenuse is the diameter of the circle.Students should remember formulas of area of triangle and circumradius for solving these types of questions.
Complete step-by-step answer:
In fig AB=b, AC=c, BC=a , AD=$\sqrt {\dfrac{2}{3}} $
According to the question it is given that
b = c = 1,
So, the nature of the triangle is isosceles.
The length of the altitude AD = C,
Radius of the circle = R
Now we find the area of triangle ABC where BC is the base and AD is the height of the triangle
$\Delta = \dfrac{1}{2} \times b \times h$
$\Delta = \dfrac{1}{2} \times BC \times AD$
Now put the values BC=a , AD=$\sqrt {\dfrac{2}{3}} $, we get,
$\Delta = \dfrac{1}{2} \times a \times \sqrt {\dfrac{2}{3}} $
By solving we get value of a,
\[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \]
Now we find the circumradius of the circle in which triangle is inscribed
$R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ where $\Delta$ is the area of the triangle.
We put the values of \[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \],b=c=1 in the formula we get,
$ \Rightarrow R = \dfrac{{(\dfrac{{2\Delta \sqrt 3 }}{{\sqrt 2 }}) \times 1 \times 1}}{{4 \times \Delta }}$
Now $\sqrt 2 $ comes in the denominator,
$ \Rightarrow R = \dfrac{{2 \times \Delta \times \sqrt 3 }}{{4 \times \sqrt 2 \times \Delta }}$
Now, We cancel out the similar terms
$ \Rightarrow R = \dfrac{{\sqrt 2 \times \sqrt 2 \times \Delta \times \sqrt 3 }}{{2 \times 2 \times \sqrt 2 \times \Delta }}$
We get,
$ \Rightarrow R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
So, the circumradius of the circle$R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$.
So, the correct answer is “Option B”.
Note:The radius of circle circumscribed around a triangle is known as circumradius.Triangle inscribed in a circle means that there is a triangle which is drawn inside the circle. If it is a right angled triangle drawn inside a circle so its hypotenuse is the diameter of the circle.Students should remember formulas of area of triangle and circumradius for solving these types of questions.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE