Answer
Verified
459.6k+ views
Hint:First all we have to make a free body diagram depicting clearly all the forces acting. Then we have to see whether any forces balance out each other or not. We have to then add the forces and arrive at our answer.
Complete step by step answer:
We have drawn a free body diagram and now we can easily solve this problem.
Since the body is in equilibrium, so sum of all the forces must be zero
In horizontal direction:
\[\begin{align}
&\Rightarrow {{N}_{2}}=f \\
&\Rightarrow {{N}_{2}}=\mu mg \\
\end{align}\]
where f is the frictional force due to the floor whose coefficient of friction is \[\mu \]
In vertical direction:
\[\Rightarrow {{N}_{1}}=mg\]
Since the body is inclined it has the tendency to rotate but there is no rotation so the sum of all torque acting on the body is zero.
\[\begin{align}
&\Rightarrow \sum{\tau }=0 \\
&\Rightarrow \dfrac{mgL\cos \theta }{2}+fL\sin \theta ={{N}_{1}}L\cos \theta \\
&\Rightarrow \dfrac{mgL\cos \theta }{2}+\mu mgL\sin \theta =mgL\cos \theta \\
&\Rightarrow \mu mgL\sin \theta =\dfrac{mgL\cos \theta }{2} \\
&\therefore \tan \theta =\dfrac{1}{2\mu } \\
\end{align}\]
So, the correct option comes out to be (C).
Note:Always keep in mind that frictional force opposes the relative motion of the two bodies. Here the ladder has the tendency to move leftwards, so frictional force acts towards right. Also, in accordance with Newton’s third law forces occur in pairs, that is the cause of origin of normal reaction.
Complete step by step answer:
We have drawn a free body diagram and now we can easily solve this problem.
Since the body is in equilibrium, so sum of all the forces must be zero
In horizontal direction:
\[\begin{align}
&\Rightarrow {{N}_{2}}=f \\
&\Rightarrow {{N}_{2}}=\mu mg \\
\end{align}\]
where f is the frictional force due to the floor whose coefficient of friction is \[\mu \]
In vertical direction:
\[\Rightarrow {{N}_{1}}=mg\]
Since the body is inclined it has the tendency to rotate but there is no rotation so the sum of all torque acting on the body is zero.
\[\begin{align}
&\Rightarrow \sum{\tau }=0 \\
&\Rightarrow \dfrac{mgL\cos \theta }{2}+fL\sin \theta ={{N}_{1}}L\cos \theta \\
&\Rightarrow \dfrac{mgL\cos \theta }{2}+\mu mgL\sin \theta =mgL\cos \theta \\
&\Rightarrow \mu mgL\sin \theta =\dfrac{mgL\cos \theta }{2} \\
&\therefore \tan \theta =\dfrac{1}{2\mu } \\
\end{align}\]
So, the correct option comes out to be (C).
Note:Always keep in mind that frictional force opposes the relative motion of the two bodies. Here the ladder has the tendency to move leftwards, so frictional force acts towards right. Also, in accordance with Newton’s third law forces occur in pairs, that is the cause of origin of normal reaction.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers