Answer
Verified
441.3k+ views
Hint : Understand that there is no external torque that does any work. The particle doesn’t produce any torque on the rod as such. Due to this reason angular momentum is conserved. Equate the angular momentum and find angular velocity.
Complete step by step answer
Given that there is a uniform rod of mass M and length L that is hinged at the center. Now, it is essential to understand that, when an object is hinged or fixed at the center, the only possible motion when a force applied to its ends is rotational.
Hence the velocity undergone by the rod, when the particle of mass m and velocity u striking the ends of the rod is angular. Hence, we see here that the particle doesn’t affect the angular momentum of the rod.
This means that the angular momentum of the System is conserved from the initial stage where the particle doesn’t hit and after the particle hits.
Now, let $ {L_i} $ be the initial angular momentum of the particle that strikes the rod and let $ {L_f} $ be the final angular momentum after the particle hits the rod.
Now, Angular momentum of the rod is given by the formula,
$ {L_i} = \dfrac{{muL}}{2} $ , where m is mass of the particle, u is the velocity of the particle
Now final angular momentum is calculated using
$ L = I \times \omega $ ,As angular momentum is product of Inertia and angular velocity of the body
Now
$ {L_f} = {I_{particle}} \times {\omega _{particle}} + {I_{rod}} \times {\omega _{Rod}} $
Now, Moment of Inertia of a rod is $ \dfrac{{M{L^2}}}{{12}} $ and moment of inertia of ball is $ \dfrac{{m{L^2}}}{4} $
$ {L_f} = \dfrac{{M{L^2}}}{{12}} \times \omega + \dfrac{{m{L^2}}}{4} \times \omega $ (Angular Velocity is equal since there is no initial of rod)
$ {L_f} = \dfrac{{(M + 3m){L^2}}}{{12}} \times \omega $
Now, we know that the momentum is conserved and hence $ {L_i} $ = $ {L_f} $
$ \dfrac{{muL}}{2} = \dfrac{{(M + 3m){L^2}}}{{12}} \times \omega $
$ mu = \dfrac{{(M + 3m)L}}{6} \times \omega $
$ \dfrac{{6mu}}{{(M + 3m)L}} = \omega $
Hence, Option (D) is the correct answer for the given question.
Note
Angular velocity can also be calculated as the product of linear momentum of the object and the radius of the object affected by linear momentum.
Complete step by step answer
Given that there is a uniform rod of mass M and length L that is hinged at the center. Now, it is essential to understand that, when an object is hinged or fixed at the center, the only possible motion when a force applied to its ends is rotational.
Hence the velocity undergone by the rod, when the particle of mass m and velocity u striking the ends of the rod is angular. Hence, we see here that the particle doesn’t affect the angular momentum of the rod.
This means that the angular momentum of the System is conserved from the initial stage where the particle doesn’t hit and after the particle hits.
Now, let $ {L_i} $ be the initial angular momentum of the particle that strikes the rod and let $ {L_f} $ be the final angular momentum after the particle hits the rod.
Now, Angular momentum of the rod is given by the formula,
$ {L_i} = \dfrac{{muL}}{2} $ , where m is mass of the particle, u is the velocity of the particle
Now final angular momentum is calculated using
$ L = I \times \omega $ ,As angular momentum is product of Inertia and angular velocity of the body
Now
$ {L_f} = {I_{particle}} \times {\omega _{particle}} + {I_{rod}} \times {\omega _{Rod}} $
Now, Moment of Inertia of a rod is $ \dfrac{{M{L^2}}}{{12}} $ and moment of inertia of ball is $ \dfrac{{m{L^2}}}{4} $
$ {L_f} = \dfrac{{M{L^2}}}{{12}} \times \omega + \dfrac{{m{L^2}}}{4} \times \omega $ (Angular Velocity is equal since there is no initial of rod)
$ {L_f} = \dfrac{{(M + 3m){L^2}}}{{12}} \times \omega $
Now, we know that the momentum is conserved and hence $ {L_i} $ = $ {L_f} $
$ \dfrac{{muL}}{2} = \dfrac{{(M + 3m){L^2}}}{{12}} \times \omega $
$ mu = \dfrac{{(M + 3m)L}}{6} \times \omega $
$ \dfrac{{6mu}}{{(M + 3m)L}} = \omega $
Hence, Option (D) is the correct answer for the given question.
Note
Angular velocity can also be calculated as the product of linear momentum of the object and the radius of the object affected by linear momentum.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE