
A uniformly charged solid sphere of the radius $R$ has potential ${V_0}$ (Measured with respect to $\infty $) on its surface. For this sphere the equipotential surfaces with potentials $\dfrac{{3{V_0}}}{2}$, $\dfrac{{5{V_0}}}{4}$, $\dfrac{{3{V_0}}}{4}$ and (A)$\dfrac{{{V_0}}}{4}$have a radius ${R_1}$, ${R_2}$, ${R_3}$ and ${R_4}$ respectively then:
(A) ${R_1} = 0$ and ${R_2} > \left( {{R_4} - {R_3}} \right)$
(B) ${R_1} \ne 0$and $\left( {{R_2} - {R_1}} \right) > \left( {{R_4} - {R_3}} \right)$
(C) $2R < {R_4}$
(D) None of the above
Answer
127.8k+ views
Hint: We have a uniformly charged sphere of a radius $R$, the potential on the surface of the sphere with respect to infinity is also given. We are also given the equipotential surfaces with their respective radii. Now we have to find the relation between the given radii.
Formula used
$V = \dfrac{{KQ}}{r}$(where, $V$ stands for the potential of the sphere, $K$ is a constant, $Q$stands for the charge of the sphere, and $r$ stands for the separation of the charge from infinity.
Complete Step by step solution:
The potential on the surface of the sphere can be written as,
$V = \dfrac{{KQ}}{R} = {V_0}$
The potential at any point outside the sphere can be written as,
$V = \dfrac{{KQ}}{r}$ for $r > R$
The potential at any point inside the sphere is given by,
${V_i} = \dfrac{{kQ}}{{2{R^3}}}\left( {3{R^2} - {r^2}} \right)$ for $r < R$
Where $r$is the radius of the sphere.
At the centre of the sphere, $r = 0$
$ \Rightarrow {V_i} = \dfrac{{3KQ}}{{2R}}$
Since the potential on the surface is ${V_0}$, for $r < R$,$V > {V_0}$
For $r > R$,$V < {V_0}$
We know that $\dfrac{{3{V_0}}}{2} > {V_0}$
$ \Rightarrow {R_1} < R$
Hence, we can write
$\dfrac{{3{V_0}}}{2} = \dfrac{{KQ}}{{2{R^3}}}\left( {3{R^2} - R_1^2} \right)$
We know that,
$\dfrac{{KQ}}{R} = {V_0}$
Substituting in the above equation,
$\dfrac{{3{V_0}}}{2} = \dfrac{{{V_0}}}{{2{R^2}}}\left( {3{R^2} - R_1^2} \right)$
Canceling common terms on both sides,
$3 = \dfrac{1}{{{R^2}}}\left( {3{R^2} - R_1^2} \right)$
$ \Rightarrow 3{R^2} = 3{R^2} - R_1^2$
From this, we get
${R_1} = 0$
For ${R_2}$, $V = \dfrac{{5{V_0}}}{4}$
From this, we know that
$\dfrac{{5{V_0}}}{4} > {V_0}$
$ \Rightarrow {R_2} < R$
The potential can be written as,
$\dfrac{{5{V_0}}}{4} = \dfrac{{KQ}}{{2{R^3}}}\left( {3{R^2} - R_2^2} \right)$
Substituting$\dfrac{{KQ}}{R} = {V_0}$
We get,
$\dfrac{{5{V_0}}}{4} = \dfrac{{{V_0}}}{{2{R^2}}}\left( {3{R^2} - R_2^2} \right)$
Canceling the common terms, we get
$\dfrac{5}{2} = \dfrac{1}{{{R^2}}}\left( {3{R^2} - R_2^2} \right)$
Solving, we get
$\dfrac{5}{2}{R^2} = 3{R^2} - R_2^2$
From this, we get
$R_2^2 = \dfrac{{{R^2}}}{2}$
Taking the square root,
${R_2} = \dfrac{R}{{\sqrt 2 }}$
For ${R_3}$
$\dfrac{{3{V_0}}}{4} < {V_0}$
$ \Rightarrow {R_3} > R$
The potential can be written as,
$\dfrac{{3{V_0}}}{4} = \dfrac{{kQ}}{{{R_3}}}$
Multiply and divide with $R$on RHS
$\dfrac{{3{V_0}}}{4} = \dfrac{{kQ}}{{{R_3}}} \times \dfrac{R}{R}$
Substituting$\dfrac{{KQ}}{R} = {V_0}$
$\dfrac{{3{V_0}}}{4} = \dfrac{{{V_0}R}}{{{R_3}}}$
Canceling the common terms,
$3{R_3} = 4R$
$ \Rightarrow {R_3} = \dfrac{4}{3}R$
For ${R_4}$
$\dfrac{{{V_0}}}{4} < {V_0}$
$ \Rightarrow {R_4} > R$
Therefore, we can write the potential as,
$\dfrac{{{V_0}}}{4} = \dfrac{{KQ}}{{{R_4}}}$
Multiply and divide with $R$on RHS
$\dfrac{{{V_0}}}{4} = \dfrac{{KQ}}{{{R_4}}} \times \dfrac{R}{R}$
Substituting$\dfrac{{KQ}}{R} = {V_0}$
$\dfrac{{{V_0}}}{4} = \dfrac{{{V_0}R}}{{{R_4}}}$
Canceling common terms and solving
${R_4} = 4R$
The four radii are
${R_1} = 0$
${R_2} = \dfrac{R}{{\sqrt 2 }}$
${R_3} = \dfrac{4}{3}R$
And, ${R_4} = 4R$
Considering the relations in the options,
${R_1} = 0$ and ${R_2} > \left( {{R_4} - {R_3}} \right)$
${R_4} - {R_3} = 4R - \dfrac{4}{3}R = \dfrac{8}{3}R$
From this, $\dfrac{8}{3}R > \dfrac{R}{{\sqrt 2 }}$
Therefore option A is not correct.
In option B, it is given ${R_1} \ne 0$, therefore option B is also wrong.
In option C, it is given $2R < {R_4}$
We know that ${R_4} = 4R$
$ \Rightarrow 2R = \dfrac{{{R_4}}}{2}$
Therefore, option (C) is the correct answer.
The answer is: Option (C): $2R < {R_4}$
Note:
A surface on which every point has the same potential is known as an equipotential surface. The electric field will be perpendicular to the equipotential surface. For moving a charge on an equipotential surface no work is required.
Formula used
$V = \dfrac{{KQ}}{r}$(where, $V$ stands for the potential of the sphere, $K$ is a constant, $Q$stands for the charge of the sphere, and $r$ stands for the separation of the charge from infinity.
Complete Step by step solution:
The potential on the surface of the sphere can be written as,
$V = \dfrac{{KQ}}{R} = {V_0}$
The potential at any point outside the sphere can be written as,
$V = \dfrac{{KQ}}{r}$ for $r > R$
The potential at any point inside the sphere is given by,
${V_i} = \dfrac{{kQ}}{{2{R^3}}}\left( {3{R^2} - {r^2}} \right)$ for $r < R$
Where $r$is the radius of the sphere.
At the centre of the sphere, $r = 0$
$ \Rightarrow {V_i} = \dfrac{{3KQ}}{{2R}}$
Since the potential on the surface is ${V_0}$, for $r < R$,$V > {V_0}$
For $r > R$,$V < {V_0}$
We know that $\dfrac{{3{V_0}}}{2} > {V_0}$
$ \Rightarrow {R_1} < R$
Hence, we can write
$\dfrac{{3{V_0}}}{2} = \dfrac{{KQ}}{{2{R^3}}}\left( {3{R^2} - R_1^2} \right)$
We know that,
$\dfrac{{KQ}}{R} = {V_0}$
Substituting in the above equation,
$\dfrac{{3{V_0}}}{2} = \dfrac{{{V_0}}}{{2{R^2}}}\left( {3{R^2} - R_1^2} \right)$
Canceling common terms on both sides,
$3 = \dfrac{1}{{{R^2}}}\left( {3{R^2} - R_1^2} \right)$
$ \Rightarrow 3{R^2} = 3{R^2} - R_1^2$
From this, we get
${R_1} = 0$
For ${R_2}$, $V = \dfrac{{5{V_0}}}{4}$
From this, we know that
$\dfrac{{5{V_0}}}{4} > {V_0}$
$ \Rightarrow {R_2} < R$
The potential can be written as,
$\dfrac{{5{V_0}}}{4} = \dfrac{{KQ}}{{2{R^3}}}\left( {3{R^2} - R_2^2} \right)$
Substituting$\dfrac{{KQ}}{R} = {V_0}$
We get,
$\dfrac{{5{V_0}}}{4} = \dfrac{{{V_0}}}{{2{R^2}}}\left( {3{R^2} - R_2^2} \right)$
Canceling the common terms, we get
$\dfrac{5}{2} = \dfrac{1}{{{R^2}}}\left( {3{R^2} - R_2^2} \right)$
Solving, we get
$\dfrac{5}{2}{R^2} = 3{R^2} - R_2^2$
From this, we get
$R_2^2 = \dfrac{{{R^2}}}{2}$
Taking the square root,
${R_2} = \dfrac{R}{{\sqrt 2 }}$
For ${R_3}$
$\dfrac{{3{V_0}}}{4} < {V_0}$
$ \Rightarrow {R_3} > R$
The potential can be written as,
$\dfrac{{3{V_0}}}{4} = \dfrac{{kQ}}{{{R_3}}}$
Multiply and divide with $R$on RHS
$\dfrac{{3{V_0}}}{4} = \dfrac{{kQ}}{{{R_3}}} \times \dfrac{R}{R}$
Substituting$\dfrac{{KQ}}{R} = {V_0}$
$\dfrac{{3{V_0}}}{4} = \dfrac{{{V_0}R}}{{{R_3}}}$
Canceling the common terms,
$3{R_3} = 4R$
$ \Rightarrow {R_3} = \dfrac{4}{3}R$
For ${R_4}$
$\dfrac{{{V_0}}}{4} < {V_0}$
$ \Rightarrow {R_4} > R$
Therefore, we can write the potential as,
$\dfrac{{{V_0}}}{4} = \dfrac{{KQ}}{{{R_4}}}$
Multiply and divide with $R$on RHS
$\dfrac{{{V_0}}}{4} = \dfrac{{KQ}}{{{R_4}}} \times \dfrac{R}{R}$
Substituting$\dfrac{{KQ}}{R} = {V_0}$
$\dfrac{{{V_0}}}{4} = \dfrac{{{V_0}R}}{{{R_4}}}$
Canceling common terms and solving
${R_4} = 4R$
The four radii are
${R_1} = 0$
${R_2} = \dfrac{R}{{\sqrt 2 }}$
${R_3} = \dfrac{4}{3}R$
And, ${R_4} = 4R$
Considering the relations in the options,
${R_1} = 0$ and ${R_2} > \left( {{R_4} - {R_3}} \right)$
${R_4} - {R_3} = 4R - \dfrac{4}{3}R = \dfrac{8}{3}R$
From this, $\dfrac{8}{3}R > \dfrac{R}{{\sqrt 2 }}$
Therefore option A is not correct.
In option B, it is given ${R_1} \ne 0$, therefore option B is also wrong.
In option C, it is given $2R < {R_4}$
We know that ${R_4} = 4R$
$ \Rightarrow 2R = \dfrac{{{R_4}}}{2}$
Therefore, option (C) is the correct answer.
The answer is: Option (C): $2R < {R_4}$
Note:
A surface on which every point has the same potential is known as an equipotential surface. The electric field will be perpendicular to the equipotential surface. For moving a charge on an equipotential surface no work is required.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
