Answer
Verified
453k+ views
Hint: First we will find the expression for force exerted by two poles on each other which are separated by a certain distance precisely Coulomb’s law of magnetism. We will substitute the values and manipulate accordingly.
Complete step by step answer:
In the given question, we are supplied with the following data:
The magnetic dipole is of magnitude \[1\] .
It means that the pole strength of each pole is \[1\,{\text{Am}}\] .
The distance of separation between the two poles is \[1\] meter.
We are asked to find the force of repulsion between these two poles which are identical in nature. They are identical in the sense that both are of the same polarity.
So, we have,
\[{m_1} = 1\,{\text{Am}}\]
\[{m_2} = 1\,{\text{Am}}\]
\[r = 1\,{\text{m}}\]
\[{\mu _0} = 4\pi \times 1{0^{ - 7}}\,{\text{Tm}}{{\text{A}}^{ - 1}}\]
To calculate the force of repulsion between these two poles, we apply the formula which is the Coulomb’s law of magnetism:
\[F = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{{{m_1}{m_2}}}{{{r^2}}}\] …… (1)
Where,
\[{\mu _0}\] indicates permeability constant.
\[{m_1}\] and \[{m_2}\] indicates pole strength.
\[r\] indicates distance of separation.
Substituting the required values in the equation (1), we get:
\[\begin{gathered}
F = \dfrac{{4\pi \times 1{0^{ - 7}}}}{{4\pi }} \times \dfrac{{1 \times 1}}{{{1^2}}} \\
F = {10^{ - 7}}\,{\text{N}} \\
\end{gathered} \]
Hence, the required force is found out to be \[{10^{ - 7}}\,{\text{N}}\] .
So, the correct answer is “Option B”.
Additional Information:
A type of physical phenomenon that is driven by magnetic fields is magnetism. Electric currents and elementary particles' magnetic moments give rise to a magnetic field operating on other currents and magnetic moments. One part of the combined electromagnetism phenomena is magnetism.
As they draw or repel each other, magnetism is the energy exerted by magnets. The acceleration of electric charges induced magnetism. Any object consists of tiny atoms called units. There are electrons in every molecule, ions that bear electric charges. The electrons orbit the nucleus, or heart, of an atom, like spinning tops. Their motion induces an electrical current which allows any electron to behave like a microscopic magnet.
Note:
While solving this problem, remember that it is the case of identical poles. They both have unit magnitude, which means they are of magnitude \[1\] . Poles with different polarities will always attract each other. Had it been the case of non-identical poles and the distance same, then also the force would come out the same magnitude that we have just obtained, but it would be attracting in nature rather than repulsion.
Complete step by step answer:
In the given question, we are supplied with the following data:
The magnetic dipole is of magnitude \[1\] .
It means that the pole strength of each pole is \[1\,{\text{Am}}\] .
The distance of separation between the two poles is \[1\] meter.
We are asked to find the force of repulsion between these two poles which are identical in nature. They are identical in the sense that both are of the same polarity.
So, we have,
\[{m_1} = 1\,{\text{Am}}\]
\[{m_2} = 1\,{\text{Am}}\]
\[r = 1\,{\text{m}}\]
\[{\mu _0} = 4\pi \times 1{0^{ - 7}}\,{\text{Tm}}{{\text{A}}^{ - 1}}\]
To calculate the force of repulsion between these two poles, we apply the formula which is the Coulomb’s law of magnetism:
\[F = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{{{m_1}{m_2}}}{{{r^2}}}\] …… (1)
Where,
\[{\mu _0}\] indicates permeability constant.
\[{m_1}\] and \[{m_2}\] indicates pole strength.
\[r\] indicates distance of separation.
Substituting the required values in the equation (1), we get:
\[\begin{gathered}
F = \dfrac{{4\pi \times 1{0^{ - 7}}}}{{4\pi }} \times \dfrac{{1 \times 1}}{{{1^2}}} \\
F = {10^{ - 7}}\,{\text{N}} \\
\end{gathered} \]
Hence, the required force is found out to be \[{10^{ - 7}}\,{\text{N}}\] .
So, the correct answer is “Option B”.
Additional Information:
A type of physical phenomenon that is driven by magnetic fields is magnetism. Electric currents and elementary particles' magnetic moments give rise to a magnetic field operating on other currents and magnetic moments. One part of the combined electromagnetism phenomena is magnetism.
As they draw or repel each other, magnetism is the energy exerted by magnets. The acceleration of electric charges induced magnetism. Any object consists of tiny atoms called units. There are electrons in every molecule, ions that bear electric charges. The electrons orbit the nucleus, or heart, of an atom, like spinning tops. Their motion induces an electrical current which allows any electron to behave like a microscopic magnet.
Note:
While solving this problem, remember that it is the case of identical poles. They both have unit magnitude, which means they are of magnitude \[1\] . Poles with different polarities will always attract each other. Had it been the case of non-identical poles and the distance same, then also the force would come out the same magnitude that we have just obtained, but it would be attracting in nature rather than repulsion.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE