A vertical pole stands at a point O on a horizontal ground. A and B are points on the ground d meters apart. The pole subtends angles \[\alpha \] and \[\beta \] at A and B respectively. AB subtends an angle \[\gamma \] at O, the height of the pole is
Answer
Verified
472.8k+ views
Hint:
The formula for writing tangent of an angle is
\[\tan \theta =\dfrac{perpendicular}{base}\] .
Another important formula that may be used in the question is the cosine rule which is
\[{{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B\]
(Where a, b and c are the side lengths of the triangle and B is the angle opposite to the side length b)
Complete step by step answer:
As mentioned in the question, the figure would look like the below picture
(Where the height of the vertical pole is taken to be as ‘h’)
Let the distance between A and O be x and the distance between B and O be y.
Now, firstly using the tangent formula in triangle with \[\alpha \] angle as follows
\[\begin{align}
& \tan \alpha =\dfrac{h}{x} \\
& x=h\cot \alpha \ \ \ \ \ ...(1) \\
\end{align}\]
Secondly, using the tangent formula again in the triangle with \[\beta \] angle as follows
\[\begin{align}
& \tan \beta =\dfrac{h}{y} \\
& y=h\cot \beta \ \ \ \ \ ...(2) \\
\end{align}\]
Now, using the cosine formula in the \[\vartriangle AOB\]as follows
\[{{d}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\cos \gamma \ \ \ \ \ ...(a)\]
Now, putting equations (1) and (2) in equation (a) as follows, we get
\[\begin{align}
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2(h\cot \alpha )(h\cot \beta )\cos \gamma \\
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2{{h}^{2}}\cdot \cot \alpha \cdot \cot \beta \cdot \cos \gamma \\
& {{d}^{2}}={{h}^{2}}\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right) \\
& {{h}^{2}}=\dfrac{{{d}^{2}}}{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)} \\
\end{align}\]
Now, on taking square root on both the sides, we get the height of the vertical pole that is standing on point O is
\[h=\dfrac{d}{{{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)}^{\dfrac{1}{2}}}}\]
Note:
The figure in this question is very tricky and is difficult to visualize it at first. Hence, the students can make an error while drawing the figure and then end up making a mistake and they would get to the correct solution. We can also solve the sides of the triangle using sine rule and then convert into cosine form.
The formula for writing tangent of an angle is
\[\tan \theta =\dfrac{perpendicular}{base}\] .
Another important formula that may be used in the question is the cosine rule which is
\[{{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B\]
(Where a, b and c are the side lengths of the triangle and B is the angle opposite to the side length b)
Complete step by step answer:
As mentioned in the question, the figure would look like the below picture
(Where the height of the vertical pole is taken to be as ‘h’)
Let the distance between A and O be x and the distance between B and O be y.
Now, firstly using the tangent formula in triangle with \[\alpha \] angle as follows
\[\begin{align}
& \tan \alpha =\dfrac{h}{x} \\
& x=h\cot \alpha \ \ \ \ \ ...(1) \\
\end{align}\]
Secondly, using the tangent formula again in the triangle with \[\beta \] angle as follows
\[\begin{align}
& \tan \beta =\dfrac{h}{y} \\
& y=h\cot \beta \ \ \ \ \ ...(2) \\
\end{align}\]
Now, using the cosine formula in the \[\vartriangle AOB\]as follows
\[{{d}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\cos \gamma \ \ \ \ \ ...(a)\]
Now, putting equations (1) and (2) in equation (a) as follows, we get
\[\begin{align}
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2(h\cot \alpha )(h\cot \beta )\cos \gamma \\
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2{{h}^{2}}\cdot \cot \alpha \cdot \cot \beta \cdot \cos \gamma \\
& {{d}^{2}}={{h}^{2}}\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right) \\
& {{h}^{2}}=\dfrac{{{d}^{2}}}{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)} \\
\end{align}\]
Now, on taking square root on both the sides, we get the height of the vertical pole that is standing on point O is
\[h=\dfrac{d}{{{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)}^{\dfrac{1}{2}}}}\]
Note:
The figure in this question is very tricky and is difficult to visualize it at first. Hence, the students can make an error while drawing the figure and then end up making a mistake and they would get to the correct solution. We can also solve the sides of the triangle using sine rule and then convert into cosine form.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE