
A vibration magnetometer placed in magnetic merlian has a small bar magnet. The magnet executes oscillations with a time period of 2s in earth’s horizontal magnetic field of 24muT. When a horizontal field of 18muT is produced opposite to the earth’s field by placing a current carrying wire, the new time period of the magnet will be then
A. 1s
B. 2s
C. 3s
D. 4s
Answer
495.3k+ views
Hint: The time period of the bar magnet in a magnetic field is given by $T=2\pi \sqrt{\dfrac{I}{MB}}$. Write the equation of time period in both the given cases and then divide them to find the value of the new time period in the second case.
Formula used:
$T=2\pi \sqrt{\dfrac{I}{MB}}$
Complete step-by-step answer:
The time period of the bar magnet in a magnetic field is given by $T=2\pi \sqrt{\dfrac{I}{MB}}$,
where T is the time period of the bar magnet, I is the moment of inertia of the bar magnet about the axis passing through its centre, M is the mass of the bar magnet and B is the net magnetic field.
Let the time period of the small bar magnet when the magnetic field ${{B}_{1}}$ is equal to 24muT be ${{T}_{1}}$. Therefore,
${{T}_{1}}=2\pi \sqrt{\dfrac{I}{M{{B}_{1}}}}$ ……. (i).
It is given that ${{T}_{1}}=2s$.
When a horizontal field of 18muT is produced opposite to the earth’s field by placing a current carrying wire, a new magnetic field will be created because the horizontal field of 18muT opposes the erath’’s field of 24muT.
Let the time period of the bar magnet, when a new magnetic field ${{B}_{2}}$ is created be ${{T}_{2}}$.
Hence, ${{T}_{2}}=2\pi \sqrt{\dfrac{I}{M{{B}_{2}}}}$ ….. (ii).
The new magnetic field created will be equal to (24 – 18) muT.
Hence, ${{B}_{2}}=6muT$.
Divide equation (i) and equation (ii).
Therefore, we get
$\dfrac{{{T}_{1}}}{{{T}_{2}}}=\dfrac{2\pi \sqrt{\dfrac{I}{M{{B}_{1}}}}}{2\pi \sqrt{\dfrac{I}{M{{B}_{2}}}}}$
This implies that,
$\dfrac{{{T}_{1}}}{{{T}_{2}}}=\dfrac{\sqrt{{{B}_{2}}}}{\sqrt{{{B}_{1}}}}\Rightarrow {{T}_{2}}={{T}_{1}}\dfrac{\sqrt{{{B}_{1}}}}{\sqrt{{{B}_{2}}}}$
Substitute the values of ${{T}_{1}}$, ${{B}_{1}}$ and ${{B}_{2}}$.
Therefore, we get
${{T}_{2}}=2\times \dfrac{\sqrt{24}}{\sqrt{6}}=2\times \sqrt{\dfrac{24}{6}}=2\times \sqrt{4}=2\times 2=4s$
Therefore, the new time period of the small bar magnet placed in the vibration magnetometer is 4 seconds.
Note: We can note when the net magnetic field decreased, the time period of oscillations of the bar magnet inside the magnetometer increased. This relation helps to know the value of the horizontal magnetic field inside.
Formula used:
$T=2\pi \sqrt{\dfrac{I}{MB}}$
Complete step-by-step answer:
The time period of the bar magnet in a magnetic field is given by $T=2\pi \sqrt{\dfrac{I}{MB}}$,
where T is the time period of the bar magnet, I is the moment of inertia of the bar magnet about the axis passing through its centre, M is the mass of the bar magnet and B is the net magnetic field.
Let the time period of the small bar magnet when the magnetic field ${{B}_{1}}$ is equal to 24muT be ${{T}_{1}}$. Therefore,
${{T}_{1}}=2\pi \sqrt{\dfrac{I}{M{{B}_{1}}}}$ ……. (i).
It is given that ${{T}_{1}}=2s$.
When a horizontal field of 18muT is produced opposite to the earth’s field by placing a current carrying wire, a new magnetic field will be created because the horizontal field of 18muT opposes the erath’’s field of 24muT.
Let the time period of the bar magnet, when a new magnetic field ${{B}_{2}}$ is created be ${{T}_{2}}$.
Hence, ${{T}_{2}}=2\pi \sqrt{\dfrac{I}{M{{B}_{2}}}}$ ….. (ii).
The new magnetic field created will be equal to (24 – 18) muT.
Hence, ${{B}_{2}}=6muT$.
Divide equation (i) and equation (ii).
Therefore, we get
$\dfrac{{{T}_{1}}}{{{T}_{2}}}=\dfrac{2\pi \sqrt{\dfrac{I}{M{{B}_{1}}}}}{2\pi \sqrt{\dfrac{I}{M{{B}_{2}}}}}$
This implies that,
$\dfrac{{{T}_{1}}}{{{T}_{2}}}=\dfrac{\sqrt{{{B}_{2}}}}{\sqrt{{{B}_{1}}}}\Rightarrow {{T}_{2}}={{T}_{1}}\dfrac{\sqrt{{{B}_{1}}}}{\sqrt{{{B}_{2}}}}$
Substitute the values of ${{T}_{1}}$, ${{B}_{1}}$ and ${{B}_{2}}$.
Therefore, we get
${{T}_{2}}=2\times \dfrac{\sqrt{24}}{\sqrt{6}}=2\times \sqrt{\dfrac{24}{6}}=2\times \sqrt{4}=2\times 2=4s$
Therefore, the new time period of the small bar magnet placed in the vibration magnetometer is 4 seconds.
Note: We can note when the net magnetic field decreased, the time period of oscillations of the bar magnet inside the magnetometer increased. This relation helps to know the value of the horizontal magnetic field inside.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Types of lever in which effort is in between fulcrum class 12 physics CBSE

Which are the Top 10 Largest Countries of the World?

A two input XOR Gate produces a high output only when class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
