A well of diameter is dug deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width to form an embankment. Find the height of the embankment.
Answer
Verified
509.7k+ views
Hint- For solving such questions draw a rough diagram for better understanding. Find out the total volume of earth dug first of all in order to find the volume of embankment and finally height of the embankment.
The shape of the well be cylindrical as shown in the given figure drawn
Given depth ${h_1}$ of the well $ = 14m$
Radius $\left( {{r_1}} \right)$ of the circular end of the well $ = \dfrac{3}{2}m$
Width of the embankment $ = 4m$
As show in the figure the embankment will also be in shape of hollow cylinder so, its outer radius is
$\left( {{r_2}} \right) = 4 + \dfrac{3}{2} = \dfrac{{11}}{2}m$
Let the height of the embankment be ${h_2}$.
So the volume of the soil dug from the well
= volume of the earth used to form the embankment
As, Volume of the soil dug
= volume of the cylinder
\[
= \pi r_1^2{h_1} \\
= \pi \times {\left( {\dfrac{3}{2}} \right)^2} \times 14 \\
= \pi \times \dfrac{9}{4} \times 14 \\
\] ---- (1)
Also volume of the embankment
=volume of hollow cylinder
\[
= \pi \times \left( {r_2^2 - r_1^2} \right) \times {h_2} \\
= \pi \times \left( {{{\left( {\dfrac{{11}}{2}} \right)}^2} - {{\left( {\dfrac{3}{2}} \right)}^2}} \right) \times {h_2} \\
= \pi \times \left( {\left( {\dfrac{{121}}{4}} \right) - \left( {\dfrac{9}{4}} \right)} \right) \times {h_2} \\
= \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\] --- (2)
From equation (1) and (2), comparing to find the value of ${h_2}$.
$
\Rightarrow \pi \times \left( {\dfrac{9}{4}} \right) \times 14 = \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow \left( {\dfrac{9}{4}} \right) \times 14 = \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow {h_2} = \dfrac{9}{4} \times 14 \times \dfrac{4}{{112}} \\
\Rightarrow {h_2} = \dfrac{9}{8} \\
\Rightarrow {h_2} = 1.125m \\
$
Hence the height of the embankment will be $1.125m$.
Note- Figures are the most important part of questions containing these types of practical problems. Formulas of volume of cylinder, hollow cylinder and others are very useful and must be remembered. In order to solve problems of real life or practical type, try to relate it with some geometrical figures in order to solve the problem easily and fast.
The shape of the well be cylindrical as shown in the given figure drawn
Given depth ${h_1}$ of the well $ = 14m$
Radius $\left( {{r_1}} \right)$ of the circular end of the well $ = \dfrac{3}{2}m$
Width of the embankment $ = 4m$
As show in the figure the embankment will also be in shape of hollow cylinder so, its outer radius is
$\left( {{r_2}} \right) = 4 + \dfrac{3}{2} = \dfrac{{11}}{2}m$
Let the height of the embankment be ${h_2}$.
So the volume of the soil dug from the well
= volume of the earth used to form the embankment
As, Volume of the soil dug
= volume of the cylinder
\[
= \pi r_1^2{h_1} \\
= \pi \times {\left( {\dfrac{3}{2}} \right)^2} \times 14 \\
= \pi \times \dfrac{9}{4} \times 14 \\
\] ---- (1)
Also volume of the embankment
=volume of hollow cylinder
\[
= \pi \times \left( {r_2^2 - r_1^2} \right) \times {h_2} \\
= \pi \times \left( {{{\left( {\dfrac{{11}}{2}} \right)}^2} - {{\left( {\dfrac{3}{2}} \right)}^2}} \right) \times {h_2} \\
= \pi \times \left( {\left( {\dfrac{{121}}{4}} \right) - \left( {\dfrac{9}{4}} \right)} \right) \times {h_2} \\
= \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\] --- (2)
From equation (1) and (2), comparing to find the value of ${h_2}$.
$
\Rightarrow \pi \times \left( {\dfrac{9}{4}} \right) \times 14 = \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow \left( {\dfrac{9}{4}} \right) \times 14 = \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow {h_2} = \dfrac{9}{4} \times 14 \times \dfrac{4}{{112}} \\
\Rightarrow {h_2} = \dfrac{9}{8} \\
\Rightarrow {h_2} = 1.125m \\
$
Hence the height of the embankment will be $1.125m$.
Note- Figures are the most important part of questions containing these types of practical problems. Formulas of volume of cylinder, hollow cylinder and others are very useful and must be remembered. In order to solve problems of real life or practical type, try to relate it with some geometrical figures in order to solve the problem easily and fast.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Write an application to the principal requesting five class 10 english CBSE
What are the public facilities provided by the government? Also explain each facility
What is Commercial Farming ? What are its types ? Explain them with Examples
Complete the sentence with the most appropriate word class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE