Answer
Verified
462.6k+ views
Hint:
Recall that tension is described as the pulling force acting by the means of a rope, string or a cable. It can also be written as the pair of action-reaction forces acting at the end of the given rope or string or cable. It is the opposite of compression.
Step-by-Step Explanation:
Step I:
Suppose the length of the wire is divided into very small elements, each of which is subtending an angle $d\theta $ at the origin of the wire. The magnetic force will act in an outward direction. Since the tension is also considered an action reaction force, it should balance the magnetic force. Then the wire is said to be in equilibrium.
Step II:
The magnetic force on each element of the wire is given by $F = Idl \times B$
Where I is the current
dl is the length
B is the magnetic field.
Step III:
The tension force will act in downward direction and balance the magnetic force. The resultant force will be equal to the component of tension and is given by
$F = {T_{resul\tan t}}$ ---(i)
${T_{(resultant)}} = 2T\sin \dfrac{{d\theta }}{2}$
And force is given by $F = IdlB$
Since $d\theta $ is a very small angle, therefore $\sin \dfrac{{d\theta }}{2} = \dfrac{{d\theta }}{2}$
And $d\theta = \dfrac{{dl}}{R}$ where R is the radius of the arc.
Step IV:
Substituting value of F and T in equation (i)
$IdlB = 2T\dfrac{{dl}}{{2R}}$
$IdlB = T\dfrac{{dl}}{R}$
$T = \dfrac{{IdlBR}}{{dl}}$
$T = IBR$
Step V:
The tension in the wire is $IBR$
Option A is the right answer.
Note:It is to be noted that the direction of magnetic field due to straight and circular loops are different. At the centre of the circular loop, the magnetic field lines are straight. Each segment of circular loop carrying current produces magnetic field lines in the same direction within the loop. The direction of magnetic field at the centre of circular coil is perpendicular to the place of the coil.
Recall that tension is described as the pulling force acting by the means of a rope, string or a cable. It can also be written as the pair of action-reaction forces acting at the end of the given rope or string or cable. It is the opposite of compression.
Step-by-Step Explanation:
Step I:
Suppose the length of the wire is divided into very small elements, each of which is subtending an angle $d\theta $ at the origin of the wire. The magnetic force will act in an outward direction. Since the tension is also considered an action reaction force, it should balance the magnetic force. Then the wire is said to be in equilibrium.
Step II:
The magnetic force on each element of the wire is given by $F = Idl \times B$
Where I is the current
dl is the length
B is the magnetic field.
Step III:
The tension force will act in downward direction and balance the magnetic force. The resultant force will be equal to the component of tension and is given by
$F = {T_{resul\tan t}}$ ---(i)
${T_{(resultant)}} = 2T\sin \dfrac{{d\theta }}{2}$
And force is given by $F = IdlB$
Since $d\theta $ is a very small angle, therefore $\sin \dfrac{{d\theta }}{2} = \dfrac{{d\theta }}{2}$
And $d\theta = \dfrac{{dl}}{R}$ where R is the radius of the arc.
Step IV:
Substituting value of F and T in equation (i)
$IdlB = 2T\dfrac{{dl}}{{2R}}$
$IdlB = T\dfrac{{dl}}{R}$
$T = \dfrac{{IdlBR}}{{dl}}$
$T = IBR$
Step V:
The tension in the wire is $IBR$
Option A is the right answer.
Note:It is to be noted that the direction of magnetic field due to straight and circular loops are different. At the centre of the circular loop, the magnetic field lines are straight. Each segment of circular loop carrying current produces magnetic field lines in the same direction within the loop. The direction of magnetic field at the centre of circular coil is perpendicular to the place of the coil.
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE