A wire when bent in the form of a square encloses an area of $992.25\text{ c}{{\text{m}}^{2}}$ . If the same wire is bent in the form of a semicircle, what will be the radius of the semicircle so formed?
Answer
Verified
472.8k+ views
Hint: To find the radius of the semicircle formed from a wire that is used to make a square, we will find the side of the square using the given area and equation $\text{Area}={{a}^{2}}$ . Since the same wire is used to make a semicircle, we know that the perimeter of the square = circumference of the semicircle. Let us use the formula for circumference of semicircle, that is, $\pi r+2r$ and substitute this to the perimeter of the square to get the value of the radius.
Complete step by step answer:
We need to find the radius of the semicircle obtained. It is given that the wire used to create the semicircle was bent in the form of a square with an area $992.25\text{ c}{{\text{m}}^{2}}$ .
Hence, we can write the area of square of side a as
$\text{Area}={{a}^{2}}$
We know that the given area is $992.25\text{ c}{{\text{m}}^{2}}$ .Hence,
${{a}^{2}}=992.25$
Now, let us take the square root to get the side of the square.
$a=\sqrt{992.25}=31.5\text{cm}$
Let us find the perimeter of the square.
We know that perimeter of a square is given by
$\text{Perimeter}=4a$
Let us now substitute the values. We will get
$\text{Perimeter}=4\times 31.5=126\text{cm}$
It is given that the same wire is used to form a semicircle. Hence,
\[\text{Perimeter of the square }=\text{ circumference of the semicircle…}\left( \text{i} \right)\]
We know that the circumference of a semicircle with radius r is given as
$\text{Circumference}=\pi r+2r$
Let us substitute this in (i). We will get
$\pi r+2r=126$
Let us take r outside from LHS. We will get
$r\left( \pi +2 \right)=126$
We can take the value of $\pi =\dfrac{22}{7}$ . Hence, the above equation becomes
$r\left( \dfrac{22}{7}+2 \right)=126$
Let us solve us. We will get
$r\left( \dfrac{36}{7} \right)=126$
Taking the constants to one side, we will get
$r=126\times \dfrac{7}{36}$
We can now solve this. We will get
$r=24.5\text{cm}$
Hence, the radius of the semicircle is 24.5 cm.
Note: You must know the formulas of different shapes starting from perimeter to the area. You may mistake the area of square as 4a and the perimeter of the square as ${{a}^{2}}$ . You may use the formula for circumference of a circle , that is, $2\pi r$ instead of $\pi r+2r$ .
Complete step by step answer:
We need to find the radius of the semicircle obtained. It is given that the wire used to create the semicircle was bent in the form of a square with an area $992.25\text{ c}{{\text{m}}^{2}}$ .
Hence, we can write the area of square of side a as
$\text{Area}={{a}^{2}}$
We know that the given area is $992.25\text{ c}{{\text{m}}^{2}}$ .Hence,
${{a}^{2}}=992.25$
Now, let us take the square root to get the side of the square.
$a=\sqrt{992.25}=31.5\text{cm}$
Let us find the perimeter of the square.
We know that perimeter of a square is given by
$\text{Perimeter}=4a$
Let us now substitute the values. We will get
$\text{Perimeter}=4\times 31.5=126\text{cm}$
It is given that the same wire is used to form a semicircle. Hence,
\[\text{Perimeter of the square }=\text{ circumference of the semicircle…}\left( \text{i} \right)\]
We know that the circumference of a semicircle with radius r is given as
$\text{Circumference}=\pi r+2r$
Let us substitute this in (i). We will get
$\pi r+2r=126$
Let us take r outside from LHS. We will get
$r\left( \pi +2 \right)=126$
We can take the value of $\pi =\dfrac{22}{7}$ . Hence, the above equation becomes
$r\left( \dfrac{22}{7}+2 \right)=126$
Let us solve us. We will get
$r\left( \dfrac{36}{7} \right)=126$
Taking the constants to one side, we will get
$r=126\times \dfrac{7}{36}$
We can now solve this. We will get
$r=24.5\text{cm}$
Hence, the radius of the semicircle is 24.5 cm.
Note: You must know the formulas of different shapes starting from perimeter to the area. You may mistake the area of square as 4a and the perimeter of the square as ${{a}^{2}}$ . You may use the formula for circumference of a circle , that is, $2\pi r$ instead of $\pi r+2r$ .
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE