Answer
Verified
433.2k+ views
Hint: The above problem can be resolved using the meaning and fundamental concept of the Zener diode. In this problem, we are given an electrical circuit along which the resistors are kept at both sides of the Zener diode. Then the value of current flowing through the resistors are calculated, these values are then utilised to estimate the magnitude of current across the Zener diode, by taking the difference of current through the resistors.
Complete step by step answer:
Given:
The value of resistance is, \[{R_1} = 250\;\Omega \]
The value of another resistance is, \[{R_2} = 1\;{\rm{k\Omega }} = 1\;{\rm{k\Omega }} \times \dfrac{{1000\;\Omega }}{{1\;{\rm{k\Omega }}}} = 1000\;\Omega \].
The voltage through source is, \[{V_1} = 20\;{\rm{V}}\].
The voltage across the Zener diode is, \[{V_2} = 15\;\Omega \].
Then, the magnitude of current across the Zener diode through resistance \[{R_1}\] is,
\[{I_1} = \dfrac{{{V_2}}}{{{R_2}}}\]
Solve by substituting the values in above equation as,
\[\begin{array}{l}
{I_1} = \dfrac{{{V_2}}}{{{R_2}}}\\
{I_1} = \dfrac{{15\;{\rm{V}}}}{{1000\;\Omega }}\\
{I_1} = 0.015\;{\rm{A}} \times \dfrac{{1000\;mA}}{{1\;A}} = 15\;{\rm{mA}}\\
{I_1} = 15\;{\rm{mA}}
\end{array}\]
Further solving as,
\[\begin{array}{l}
{I_2} = \dfrac{{\left( {{V_1} - {V_2}} \right)}}{{{R_1}}}\\
{I_2} = \dfrac{{20\;{\rm{V}} - 15\;{\rm{V}}}}{{250\;\Omega }}\\
{I_2} = \dfrac{{5\;{\rm{V}}}}{{250\;\Omega }}\\
{I_2} = 0.02\;{\rm{A}} \times \dfrac{{1000\;{\rm{mA}}}}{{1\;{\rm{A}}}} = 20\;{\rm{A}}
\end{array}\]
Then the current through the Zener diode is,
\[\begin{array}{l}
{I_{zener}} = \left( {{I_2} - {I_1}} \right)\\
{I_{zener}} = \left( {20\;{\rm{mA}} - 15\;{\rm{mA}}} \right)\\
{I_{zener}} = 5\;{\rm{mA}}
\end{array}\]
Therefore, the magnitude of current through the Zener diode is \[5\;{\rm{mA}}\] and option (B) is correct.
Note:To resolve the given problem, one must know the formula for the voltage and current or commonly known as the equation of Ohm's law. Then from this information, we are handy with the current flowing, and this magnitude is utilised to draw out the magnitude of net current across the given diode. Moreover, the applications of Zener diodes are also needed to be taken into consideration to derive such relations. As this will also help to understand the various key concepts under the Zener diode.
Complete step by step answer:
Given:
The value of resistance is, \[{R_1} = 250\;\Omega \]
The value of another resistance is, \[{R_2} = 1\;{\rm{k\Omega }} = 1\;{\rm{k\Omega }} \times \dfrac{{1000\;\Omega }}{{1\;{\rm{k\Omega }}}} = 1000\;\Omega \].
The voltage through source is, \[{V_1} = 20\;{\rm{V}}\].
The voltage across the Zener diode is, \[{V_2} = 15\;\Omega \].
Then, the magnitude of current across the Zener diode through resistance \[{R_1}\] is,
\[{I_1} = \dfrac{{{V_2}}}{{{R_2}}}\]
Solve by substituting the values in above equation as,
\[\begin{array}{l}
{I_1} = \dfrac{{{V_2}}}{{{R_2}}}\\
{I_1} = \dfrac{{15\;{\rm{V}}}}{{1000\;\Omega }}\\
{I_1} = 0.015\;{\rm{A}} \times \dfrac{{1000\;mA}}{{1\;A}} = 15\;{\rm{mA}}\\
{I_1} = 15\;{\rm{mA}}
\end{array}\]
Further solving as,
\[\begin{array}{l}
{I_2} = \dfrac{{\left( {{V_1} - {V_2}} \right)}}{{{R_1}}}\\
{I_2} = \dfrac{{20\;{\rm{V}} - 15\;{\rm{V}}}}{{250\;\Omega }}\\
{I_2} = \dfrac{{5\;{\rm{V}}}}{{250\;\Omega }}\\
{I_2} = 0.02\;{\rm{A}} \times \dfrac{{1000\;{\rm{mA}}}}{{1\;{\rm{A}}}} = 20\;{\rm{A}}
\end{array}\]
Then the current through the Zener diode is,
\[\begin{array}{l}
{I_{zener}} = \left( {{I_2} - {I_1}} \right)\\
{I_{zener}} = \left( {20\;{\rm{mA}} - 15\;{\rm{mA}}} \right)\\
{I_{zener}} = 5\;{\rm{mA}}
\end{array}\]
Therefore, the magnitude of current through the Zener diode is \[5\;{\rm{mA}}\] and option (B) is correct.
Note:To resolve the given problem, one must know the formula for the voltage and current or commonly known as the equation of Ohm's law. Then from this information, we are handy with the current flowing, and this magnitude is utilised to draw out the magnitude of net current across the given diode. Moreover, the applications of Zener diodes are also needed to be taken into consideration to derive such relations. As this will also help to understand the various key concepts under the Zener diode.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE