ABC is an equilateral triangle and D is any point in AC. Prove that BD > AD.
Answer
Verified
496.8k+ views
Hint: We will first start by using the fact that $\Delta ABC$ is an equilateral triangle. Therefore, the angles of $\Delta ABC$ are $60{}^\circ $ each. Then we will prove that $\angle BAD<\angle ABD$ and will use the property of triangle that side opposite larger angle is greater than the side opposite smaller angle.
Complete step-by-step answer:
Now, we have been given that ABC is an equilateral triangle and D is any point in AC and we have to prove that BD > AD.
Now, we know that in an equilateral triangle each angle is $60{}^\circ $. Therefore, we have $\angle BAC=60{}^\circ \ and\ \angle ABC=60{}^\circ $.
Now, we have from the figure that,
$\begin{align}
& \angle ABC=\angle ABD+\angle DBC \\
& \angle ABD+\angle DBC=\angle ABC \\
\end{align}$
Now, we will substitute $\angle ABC=60{}^\circ $.
$\angle ABD+\angle DBC=60{}^\circ $
Or we can say that,
$\angle ABD<60{}^\circ $
Now, we will substitute $60{}^\circ =\angle BAD$. So, we have,
$\angle ABD<\angle BAD$
Now, we know that the side opposite to larger angle is greater than the side opposite to smaller angle. So, we have,
\[AD < BD\]
Hence Proved.
Note: It is important to note that we have used a fact that $\angle ABC=60{}^\circ $. Then we have splitted it as $\angle ABD+\angle DBC=60{}^\circ $ and since, both the angle $\angle ABC\ and\ \angle DBC$ are positive. Therefore, if we remove one of them, their overall sum will be less than $60{}^\circ $. Therefore, we have $\angle ABD<60{}^\circ $.
Complete step-by-step answer:
Now, we have been given that ABC is an equilateral triangle and D is any point in AC and we have to prove that BD > AD.
Now, we know that in an equilateral triangle each angle is $60{}^\circ $. Therefore, we have $\angle BAC=60{}^\circ \ and\ \angle ABC=60{}^\circ $.
Now, we have from the figure that,
$\begin{align}
& \angle ABC=\angle ABD+\angle DBC \\
& \angle ABD+\angle DBC=\angle ABC \\
\end{align}$
Now, we will substitute $\angle ABC=60{}^\circ $.
$\angle ABD+\angle DBC=60{}^\circ $
Or we can say that,
$\angle ABD<60{}^\circ $
Now, we will substitute $60{}^\circ =\angle BAD$. So, we have,
$\angle ABD<\angle BAD$
Now, we know that the side opposite to larger angle is greater than the side opposite to smaller angle. So, we have,
\[AD < BD\]
Hence Proved.
Note: It is important to note that we have used a fact that $\angle ABC=60{}^\circ $. Then we have splitted it as $\angle ABD+\angle DBC=60{}^\circ $ and since, both the angle $\angle ABC\ and\ \angle DBC$ are positive. Therefore, if we remove one of them, their overall sum will be less than $60{}^\circ $. Therefore, we have $\angle ABD<60{}^\circ $.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE