ABCD is a square, in which a circle is inscribed touching all the sides of the square. In the four corners of the square, 4 similar circles of equal radii are drawn, containing maximum possible area. What is the ratio of the area of the larger circle to that of the sum of the areas of four smaller circles?
Answer
Verified
476.7k+ views
Hint: Assume the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’. And then find the area of circle using the standard formula of area \[A = \pi {r^2}\]
Complete step-by-step answer:
Let the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’.
Now, see in triangle ACR,
CR = r = AR (radius of the larger circle)
Now, we can also write,
AC = CD + BD + AB
From the figure, we can say CD = r, DB = ${r_1}$
To find AB, we need to apply Pythagora's theorem in triangle ABQ.
Therefore, in triangle ABQ,
AQ = BQ = r1 (radius of the smaller circles)
Therefore, AB = $\sqrt 2 {r_1}$
Therefore, AB = r + ${r_1}(1 + \sqrt 2 )$
Applying Pythagoras theorem in triangle ACR,
$2{r^2} = {(r + {r_1}(1 + \sqrt 2 ))^2}$
$r = {r_1}(3 + 2\sqrt 2 )$
Now, sum of areas of 4 smaller circles = $4\pi {r_1}^2$
And, the area of the larger circle = $\pi {r^2}$
Therefore, the ratio of areas = $\dfrac{{\pi {r^2}}}{{4\pi {r_1}^2}}$
Using equation (1), we get the ratio of areas = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Hence, the answer is = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Note: Whenever these types of questions appear, assume the radius of larger circle as r and smaller circles as $r_1$. Then, by using the figure, apply Pythagora's theorem to find the relation between the radius and then find the areas of the smaller circles and larger circle. At last find their ratio.
Complete step-by-step answer:
Let the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’.
Now, see in triangle ACR,
CR = r = AR (radius of the larger circle)
Now, we can also write,
AC = CD + BD + AB
From the figure, we can say CD = r, DB = ${r_1}$
To find AB, we need to apply Pythagora's theorem in triangle ABQ.
Therefore, in triangle ABQ,
AQ = BQ = r1 (radius of the smaller circles)
Therefore, AB = $\sqrt 2 {r_1}$
Therefore, AB = r + ${r_1}(1 + \sqrt 2 )$
Applying Pythagoras theorem in triangle ACR,
$2{r^2} = {(r + {r_1}(1 + \sqrt 2 ))^2}$
$r = {r_1}(3 + 2\sqrt 2 )$
Now, sum of areas of 4 smaller circles = $4\pi {r_1}^2$
And, the area of the larger circle = $\pi {r^2}$
Therefore, the ratio of areas = $\dfrac{{\pi {r^2}}}{{4\pi {r_1}^2}}$
Using equation (1), we get the ratio of areas = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Hence, the answer is = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Note: Whenever these types of questions appear, assume the radius of larger circle as r and smaller circles as $r_1$. Then, by using the figure, apply Pythagora's theorem to find the relation between the radius and then find the areas of the smaller circles and larger circle. At last find their ratio.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE