Answer
Verified
457.8k+ views
Hint: Assume the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’. And then find the area of circle using the standard formula of area \[A = \pi {r^2}\]
Complete step-by-step answer:
Let the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’.
Now, see in triangle ACR,
CR = r = AR (radius of the larger circle)
Now, we can also write,
AC = CD + BD + AB
From the figure, we can say CD = r, DB = ${r_1}$
To find AB, we need to apply Pythagora's theorem in triangle ABQ.
Therefore, in triangle ABQ,
AQ = BQ = r1 (radius of the smaller circles)
Therefore, AB = $\sqrt 2 {r_1}$
Therefore, AB = r + ${r_1}(1 + \sqrt 2 )$
Applying Pythagoras theorem in triangle ACR,
$2{r^2} = {(r + {r_1}(1 + \sqrt 2 ))^2}$
$r = {r_1}(3 + 2\sqrt 2 )$
Now, sum of areas of 4 smaller circles = $4\pi {r_1}^2$
And, the area of the larger circle = $\pi {r^2}$
Therefore, the ratio of areas = $\dfrac{{\pi {r^2}}}{{4\pi {r_1}^2}}$
Using equation (1), we get the ratio of areas = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Hence, the answer is = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Note: Whenever these types of questions appear, assume the radius of larger circle as r and smaller circles as $r_1$. Then, by using the figure, apply Pythagora's theorem to find the relation between the radius and then find the areas of the smaller circles and larger circle. At last find their ratio.
Complete step-by-step answer:
Let the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’.
Now, see in triangle ACR,
CR = r = AR (radius of the larger circle)
Now, we can also write,
AC = CD + BD + AB
From the figure, we can say CD = r, DB = ${r_1}$
To find AB, we need to apply Pythagora's theorem in triangle ABQ.
Therefore, in triangle ABQ,
AQ = BQ = r1 (radius of the smaller circles)
Therefore, AB = $\sqrt 2 {r_1}$
Therefore, AB = r + ${r_1}(1 + \sqrt 2 )$
Applying Pythagoras theorem in triangle ACR,
$2{r^2} = {(r + {r_1}(1 + \sqrt 2 ))^2}$
$r = {r_1}(3 + 2\sqrt 2 )$
Now, sum of areas of 4 smaller circles = $4\pi {r_1}^2$
And, the area of the larger circle = $\pi {r^2}$
Therefore, the ratio of areas = $\dfrac{{\pi {r^2}}}{{4\pi {r_1}^2}}$
Using equation (1), we get the ratio of areas = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Hence, the answer is = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Note: Whenever these types of questions appear, assume the radius of larger circle as r and smaller circles as $r_1$. Then, by using the figure, apply Pythagora's theorem to find the relation between the radius and then find the areas of the smaller circles and larger circle. At last find their ratio.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE