Answer
Verified
469.8k+ views
Hint: Sine rule of triangle:
Let us consider, sides of a triangle \[\Delta ABC\] are \[AB = c,BC = a, CA = b\], then we get,
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Using this formula, we can find the length of \[AB\].
Complete step-by-step answer:
It is given that, \[ABCD\] is a trapezium such that \[AB\] and \[CD\] are parallel and \[BC \bot CD\].
Also it is given that,
\[\angle ADB = \theta , BC = p, CD = q\].
Then we have to find the value of \[AB\].
Let us consider, \[\angle BDC = \alpha \]
Since, \[AB\] and \[CD\] are parallel and \[BD\] is the transversal.
So,
\[\angle BDC = \angle ABD = \theta \]
Since, they are opposite interior angles.
From, \[\Delta BCD\] using the Pythagoras theorem, we get,
\[BD = \sqrt {{p^2} + {q^2}} \]
Where BD is the hypotenuse and p, q are adjacent and opposite sides of the triangle.
And using the relation between angles and sides of triangle we get,
\[\sin \theta = \dfrac{p}{{\sqrt {{p^2} + {q^2}} }}\] and \[\cos \theta = \dfrac{q}{{\sqrt {{p^2} + {q^2}} }}\]
Let us consider \[\angle ADB = \alpha \], also we know that total angle of a triangle is \[\pi \]
Now, in \[\Delta ABD\], we have \[\angle ABD = \alpha \] and \[\angle ADB = \theta \] using the above condition we get, \[\angle BAD = \pi - (\theta + \alpha )\]
Now by using rule of sine we get,
\[\dfrac{{AB}}{{\sin \theta }} = \dfrac{{BD}}{{\sin [\pi - (\theta + \alpha )]}}\]
We know that \[\sin [\pi - a] = \sin (a)\] using this we get,
\[\dfrac{{AB}}{{\sin \theta }} = \dfrac{{BD}}{{\sin (\theta + \alpha )}}\]
Let us substitute the value of \[BD\] in the above formula and applying the formula of \[\sin (\theta + \alpha ) = \sin \theta \cos \alpha + \cos \theta \sin \alpha \]we get,
\[AB = \dfrac{{\sqrt {{p^2} + {q^2}} \sin \theta }}{{\sin \theta \cos \alpha + \cos \theta \sin \alpha }}\]
Substitute the values of \[\cos {\rm{ }}\& \sin \] we get,
\[AB = \dfrac{{\sqrt {{p^2} + {q^2}} \sin \theta }}{{\sin \theta \dfrac{q}{{\sqrt {{p^2} + {q^2}} }} + \cos \theta \dfrac{p}{{\sqrt {{p^2} + {q^2}} }}}}\]
Let us multiply the above equation by \[\sqrt {{p^2} + {q^2}} \] in numerator and denominator we get,
\[AB = \dfrac{{({p^2} + {q^2})\sin \theta }}{{p\cos \theta + q\sin \theta }}\]
Hence, the value \[AB = \dfrac{{({p^2} + {q^2})\sin \theta }}{{p\cos \theta + q\sin \theta }}\]
Additional Information: A quadrilateral is called a trapezium when two opposite sides are parallel and the other two opposite sides are non-parallel.
Pythagoras theorem states that, for a right-angle triangle, the square of the hypotenuse is equal to the sum of the square of base and the square of perpendicular.
Note: The relation between side and angles in the triangle is given as,
\(\begin{array}{l}\sin a = \dfrac{{{\text{opposite side}}}}{{{\text{hypotenuse}}}}\\\cos a = \dfrac{{{\text{adjacent side}}}}{{{\text{hypotenuse}}}}\\\tan a = \dfrac{{{\text{opposite side}}}}{{{\text{adjacent side}}}}\end{array}\)
Here while using the relation we should be careful as the values of sine and cosine may vary with respect to the angle made by the side.
Let us consider, sides of a triangle \[\Delta ABC\] are \[AB = c,BC = a, CA = b\], then we get,
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Using this formula, we can find the length of \[AB\].
Complete step-by-step answer:
It is given that, \[ABCD\] is a trapezium such that \[AB\] and \[CD\] are parallel and \[BC \bot CD\].
Also it is given that,
\[\angle ADB = \theta , BC = p, CD = q\].
Then we have to find the value of \[AB\].
Let us consider, \[\angle BDC = \alpha \]
Since, \[AB\] and \[CD\] are parallel and \[BD\] is the transversal.
So,
\[\angle BDC = \angle ABD = \theta \]
Since, they are opposite interior angles.
From, \[\Delta BCD\] using the Pythagoras theorem, we get,
\[BD = \sqrt {{p^2} + {q^2}} \]
Where BD is the hypotenuse and p, q are adjacent and opposite sides of the triangle.
And using the relation between angles and sides of triangle we get,
\[\sin \theta = \dfrac{p}{{\sqrt {{p^2} + {q^2}} }}\] and \[\cos \theta = \dfrac{q}{{\sqrt {{p^2} + {q^2}} }}\]
Let us consider \[\angle ADB = \alpha \], also we know that total angle of a triangle is \[\pi \]
Now, in \[\Delta ABD\], we have \[\angle ABD = \alpha \] and \[\angle ADB = \theta \] using the above condition we get, \[\angle BAD = \pi - (\theta + \alpha )\]
Now by using rule of sine we get,
\[\dfrac{{AB}}{{\sin \theta }} = \dfrac{{BD}}{{\sin [\pi - (\theta + \alpha )]}}\]
We know that \[\sin [\pi - a] = \sin (a)\] using this we get,
\[\dfrac{{AB}}{{\sin \theta }} = \dfrac{{BD}}{{\sin (\theta + \alpha )}}\]
Let us substitute the value of \[BD\] in the above formula and applying the formula of \[\sin (\theta + \alpha ) = \sin \theta \cos \alpha + \cos \theta \sin \alpha \]we get,
\[AB = \dfrac{{\sqrt {{p^2} + {q^2}} \sin \theta }}{{\sin \theta \cos \alpha + \cos \theta \sin \alpha }}\]
Substitute the values of \[\cos {\rm{ }}\& \sin \] we get,
\[AB = \dfrac{{\sqrt {{p^2} + {q^2}} \sin \theta }}{{\sin \theta \dfrac{q}{{\sqrt {{p^2} + {q^2}} }} + \cos \theta \dfrac{p}{{\sqrt {{p^2} + {q^2}} }}}}\]
Let us multiply the above equation by \[\sqrt {{p^2} + {q^2}} \] in numerator and denominator we get,
\[AB = \dfrac{{({p^2} + {q^2})\sin \theta }}{{p\cos \theta + q\sin \theta }}\]
Hence, the value \[AB = \dfrac{{({p^2} + {q^2})\sin \theta }}{{p\cos \theta + q\sin \theta }}\]
Additional Information: A quadrilateral is called a trapezium when two opposite sides are parallel and the other two opposite sides are non-parallel.
Pythagoras theorem states that, for a right-angle triangle, the square of the hypotenuse is equal to the sum of the square of base and the square of perpendicular.
Note: The relation between side and angles in the triangle is given as,
\(\begin{array}{l}\sin a = \dfrac{{{\text{opposite side}}}}{{{\text{hypotenuse}}}}\\\cos a = \dfrac{{{\text{adjacent side}}}}{{{\text{hypotenuse}}}}\\\tan a = \dfrac{{{\text{opposite side}}}}{{{\text{adjacent side}}}}\end{array}\)
Here while using the relation we should be careful as the values of sine and cosine may vary with respect to the angle made by the side.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers