Acid hydrolysis of ester is first order reaction and rate constant is given by k=$\dfrac{2.303}{\text{t}}\text{log}\left( \dfrac{{{\text{V}}_{\infty }}\text{-}{{\text{V}}_{0}}}{{{\text{V}}_{\infty }}\text{-}{{\text{V}}_{\text{t}}}} \right)$where, ${{\text{V}}_{0}}\text{,}{{\text{V}}_{\text{t}}}$ and ${{\text{V}}_{\infty }}$ are the volumes of standard NaOH required to neutralise acid present at a given time, if ester is $50%$neutralised then:
A. ${{\text{V}}_{\infty }}\text{=}{{\text{V}}_{\text{t}}}$
B. ${{\text{V}}_{\infty }}\text{=}\left( {{\text{V}}_{\text{t}}}\text{-}{{\text{V}}_{0}} \right)$
C. ${{\text{V}}_{\infty }}\text{=2}{{\text{V}}_{\text{t}}}-{{\text{V}}_{0}}$
D. ${{\text{V}}_{\infty }}\text{=2}{{\text{V}}_{\text{t}}}+{{\text{V}}_{0}}$
Answer
Verified
482.4k+ views
Hint: The reaction of hydrolysis of ester is $\text{RCOO}{{\text{R}}^{'}}+{{\text{H}}_{2}}\text{O}\xrightarrow{{{\text{H}}^{+}}}\text{RCOOH}+{{\text{R}}^{'}}\text{OH}$. Now, we need to find the concentrations of esters, catalyst and relate it to the volumes of the NaOH given for neutralisation. The general formula for first order reaction is $\text{k=2}\text{.303log}\left( \dfrac{\text{a-x}}{\text{a}} \right)$.
Complete answer:
Let us solve this question step by step:
Step (1)- Write the reaction whose kinetic study is to be done and write its rate law, the reaction is $\text{RCOO}{{\text{R}}^{'}}+{{\text{H}}_{2}}\text{O}\xrightarrow{{{\text{H}}^{+}}}\text{RCOOH}+{{\text{R}}^{'}}\text{OH}$and the rate law is $\text{Rate = k}\left( \text{ester} \right)\text{ or k}\left( \text{ester} \right)\left( {{\text{H}}^{+}} \right)$ . The order of the reaction is 1.
Step (2)- Deal with concentrations of reactant or ester at different times, at t=0, t=t and t=$\infty $, the concentrations will be considering initial concentration as ‘a’ and at t=t, the part that dissociated or hydrolysed be ‘x’. Then, the concentrations will be-
$\begin{align}
& \text{ RCOO}{{\text{R}}^{'}}+{{\text{H}}_{2}}\text{O}\xrightarrow{{{\text{H}}^{+}}}\text{RCOOH}+{{\text{R}}^{'}}\text{OH} \\
& \text{t=0 a 0 } \\
& \text{t=t a-x x } \\
& \text{t=}\infty \text{ a-a=0 a } \\
\end{align}$
The ester completely finished when time reaches $\infty $, it means that reaction has completed and acid is completely obtained.
Step (3)- Relate these concentrations with volumes of NaOH given for neutralization. The volume of NaOH at t=0 or initially is ${{\text{V}}_{0}}$. Initially just esters and catalysts are present and NaOH will try to neutralize that catalyst or the ${{\text{H}}^{+}}$ ions. At time t=t, there is some acid present and catalyst. So, we can directly relate the volume of NaOH $\left( {{\text{V}}_{0}}\text{ and }{{\text{V}}_{\text{t}}} \right)$ with the concentration of acid, as, ${{\text{V}}_{\text{t}}}=\text{x}+{{\text{V}}_{0}}$. Similarly, when time reaches $\infty $, there is only acid present in the solution, so, ${{\text{V}}_{\infty }}$ will be related ${{\text{V}}_{\infty }}=\text{a}+{{\text{V}}_{\text{o}}}$.
Step (4)- The value of acid hydrolysed is 50%, which is represented by ‘x’. The value of x will be $\dfrac{\text{50}\times \text{a}}{100}$. The value of x is $\dfrac{\text{a}}{2}$.
Step (5)- Put the value of x in ${{\text{V}}_{\text{t}}}=\text{x}+{{\text{V}}_{0}}$, the expression is transformed to ${{\text{V}}_{\text{t}}}=\dfrac{\text{a}}{2}+{{\text{V}}_{0}}$. So, $\text{a = 2}{{\text{V}}_{\text{t}}}-2{{\text{V}}_{0}}$. Put this value of a in expression ${{\text{V}}_{\infty }}=\text{a}+{{\text{V}}_{\text{o}}}$ to replace ‘a’, the new expression is ${{\text{V}}_{\infty }}=2{{\text{V}}_{\text{t}}}-2{{\text{V}}_{0}}+{{\text{V}}_{\text{o}}}\text{ or }{{\text{V}}_{\infty }}=2{{\text{V}}_{\text{t}}}-{{\text{V}}_{\text{o}}}$.
The correct answer to this question is ${{\text{V}}_{\infty }}=2{{\text{V}}_{\text{t}}}-{{\text{V}}_{\text{o}}}$
So, the correct answer is “Option C”.
Note: The important point to note in this question is just to relate the volumes of NaOH required for neutralisation with the concentrations of the ions. The ions include only the ${{\text{H}}^{+}}$ ions from acetic acid and catalyst. As, the base can only neutralise acid so, just include those concentrations.
Complete answer:
Let us solve this question step by step:
Step (1)- Write the reaction whose kinetic study is to be done and write its rate law, the reaction is $\text{RCOO}{{\text{R}}^{'}}+{{\text{H}}_{2}}\text{O}\xrightarrow{{{\text{H}}^{+}}}\text{RCOOH}+{{\text{R}}^{'}}\text{OH}$and the rate law is $\text{Rate = k}\left( \text{ester} \right)\text{ or k}\left( \text{ester} \right)\left( {{\text{H}}^{+}} \right)$ . The order of the reaction is 1.
Step (2)- Deal with concentrations of reactant or ester at different times, at t=0, t=t and t=$\infty $, the concentrations will be considering initial concentration as ‘a’ and at t=t, the part that dissociated or hydrolysed be ‘x’. Then, the concentrations will be-
$\begin{align}
& \text{ RCOO}{{\text{R}}^{'}}+{{\text{H}}_{2}}\text{O}\xrightarrow{{{\text{H}}^{+}}}\text{RCOOH}+{{\text{R}}^{'}}\text{OH} \\
& \text{t=0 a 0 } \\
& \text{t=t a-x x } \\
& \text{t=}\infty \text{ a-a=0 a } \\
\end{align}$
The ester completely finished when time reaches $\infty $, it means that reaction has completed and acid is completely obtained.
Step (3)- Relate these concentrations with volumes of NaOH given for neutralization. The volume of NaOH at t=0 or initially is ${{\text{V}}_{0}}$. Initially just esters and catalysts are present and NaOH will try to neutralize that catalyst or the ${{\text{H}}^{+}}$ ions. At time t=t, there is some acid present and catalyst. So, we can directly relate the volume of NaOH $\left( {{\text{V}}_{0}}\text{ and }{{\text{V}}_{\text{t}}} \right)$ with the concentration of acid, as, ${{\text{V}}_{\text{t}}}=\text{x}+{{\text{V}}_{0}}$. Similarly, when time reaches $\infty $, there is only acid present in the solution, so, ${{\text{V}}_{\infty }}$ will be related ${{\text{V}}_{\infty }}=\text{a}+{{\text{V}}_{\text{o}}}$.
Step (4)- The value of acid hydrolysed is 50%, which is represented by ‘x’. The value of x will be $\dfrac{\text{50}\times \text{a}}{100}$. The value of x is $\dfrac{\text{a}}{2}$.
Step (5)- Put the value of x in ${{\text{V}}_{\text{t}}}=\text{x}+{{\text{V}}_{0}}$, the expression is transformed to ${{\text{V}}_{\text{t}}}=\dfrac{\text{a}}{2}+{{\text{V}}_{0}}$. So, $\text{a = 2}{{\text{V}}_{\text{t}}}-2{{\text{V}}_{0}}$. Put this value of a in expression ${{\text{V}}_{\infty }}=\text{a}+{{\text{V}}_{\text{o}}}$ to replace ‘a’, the new expression is ${{\text{V}}_{\infty }}=2{{\text{V}}_{\text{t}}}-2{{\text{V}}_{0}}+{{\text{V}}_{\text{o}}}\text{ or }{{\text{V}}_{\infty }}=2{{\text{V}}_{\text{t}}}-{{\text{V}}_{\text{o}}}$.
The correct answer to this question is ${{\text{V}}_{\infty }}=2{{\text{V}}_{\text{t}}}-{{\text{V}}_{\text{o}}}$
So, the correct answer is “Option C”.
Note: The important point to note in this question is just to relate the volumes of NaOH required for neutralisation with the concentrations of the ions. The ions include only the ${{\text{H}}^{+}}$ ions from acetic acid and catalyst. As, the base can only neutralise acid so, just include those concentrations.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE